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Toy Example Motivation
• Correlation coefficients are typically fully specified in the

business unit with the BU-specific risk.
• Correlations are also specified between similar risk

families in different business units.

Toy example: just two business units BU1 and BU2:
• Both are exposed to risks x and y , but only BU1 is exposed

to risk z.
• Correlations are specified between risk z, x , and y in BU1,

but not between x and y in BU2, and z in BU1.
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Insurance Application - Toy Motivation

Many possible approaches to address this problem in practice -
we consider two.

• Approach 1: (most common approach in practice)

• STEP 1: Obtain an approximate correlation matrix (at least
symmetric BUT COMPLETE) via formal statistical methods
or heuristic completions....

• STEP 2: find the nearest correlation matrix under some
projection or norm minimization objective.

• Approach 2: Find an onerous completion of the matrix
explicitly straight away!
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Capital Quantification via Risk Measures
Why do we care about correlation in this problem?

• Consider a collection of risks X1, . . . ,Xn with aggregate
risk measure ϱ[·] and individual risk capital denoted by
ϱi = ϱ[Xi ].

• If these risks are combined into one business, then the
total capital (coherent risk measures) for the business
satisfies

ϱ[X1 + · · ·+ Xn] ≤ ϱ1 + · · ·+ ϱn

• Dependence between loss processes can cause
increases or decreases in aggregate capital!

• Correlation completion methods can strongly affect the
outcome

⇒ regulators and industry require guidance on
mathematical best practice to avoid moral hazard in
artificial capital reduction!
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Application Context

Brief Examples: Banking and Insurance
Business Lines and Risk Types
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Application Context

• Correlations likely to be missing in areas of risk
management and insurance where data and loss event
history is scarce ⇒ large gaps in the data records:

• in operational risk,
• reinsurance,
• catastrophe insurance,
• life insurance, and
• cyber risk.

• The estimation of missing correlations is also important in
banking capital calculations

• Example in the internal model-based approach to market
risk and the advanced measurement approach (AMA) and
(SMA) for operational risk.

• Other important applications include correlation effects in
stress testing and scenario analysis
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Application Context

Banking Motivations from Operational Risk
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Banking Risk: Business Lines and Risk Types

Banking has three main risk classes:
• Market,
• Credit and
• Operational Risk

• Operational Risk is evolving, by loss events incurred, to be
the leading risk type in banking out of the three core risks!

In Operational Risk
• At level 1: Basel II/III requires 56 business unit/risk type

loss processes.
• At level 2 and greater granularity: this can reach 100’s to

1000’s of BuRT cells in practice.
Many unknown/missing correlations present!
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Banking Risk: Business Lines and Risk Types
• Advanced Measurement Approaches (AMA): Internal

model for 56 risk cells (7 event types × 8 business lines).
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Banking Risk: Business Lines and Risk Types

1. hardware &
software failures
2. telecommunication
roblems
3. utility outages
4. computer viruses
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Application Context

Insurance Motivations from Solvency II
Examples
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Insurance Risk: Business Lines and Risk Types

Lines of Insurance: one can generally classify insurance
companies by the type of insurance policies they write.

• Insurance coverages are often broken down via lines of
insurance.

• Information about premiums and losses is frequently
analyzed by line of insurance at the company level.

Four Major Lines of Insurance:
• Property;
• Casualty;
• Life;
• Health and Disability;

Many large companies write all lines of insurance.
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Insurance Risk: Business Lines and Risk Types
Each of the four major categories of insurance can be further
subdivided into:

• Personal
• Personal lines are property-casualty coverages that protect

an individual or family.

• Commercial
• Commercial lines are coverages designed for businesses.

e.g. of commercial lines of business
• professional indemnity;

• product liability;

• political risk;

• financial institutions;

• commercial auto insurance;

• workers compensation insurance;

• federal flood insurance;

• aircraft insurance;

• ocean marine insurance;

• medical malpractice insurance; and

• directors and officers insurance.
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Insurance Risk: Business Lines and Risk Types
Why might there be missing or uncertain correlations
between these commercial lines of business and the risk
types they are exposed to ?

• Reason 1: Contract Writing Specificities!
• Reason 2: Specialty & Nature of Insured Risk!

Example: Reason 1 Most if not all commercial lines share certain
similarities, however it is not unusual that each policy will be tailored
for the type of business being covered and the clients unique needs!

• e.g. structural engineering firm takes professional liability
insurance to protect against claims of:

• negligence in creating a buildings plans, performing
inspections, and supervising construction,
(project specific risks)

• failure to render professional services.
• specific additional coverage for each project, plus coverage

for punitive damages can be added on a general cover.
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Insurance Risk: Business Lines and Risk Types

Example: Reason 2 Specialty Types of Commercial Lines Insurance:

• Debris Removal Insurance: removing debris after a catastrophic
events e.g. fires.

• Builder’s risk insurance: insures buildings while they are being
constructed.

• Glass Insurance: covers broken windows in a commercial
establishment.

• Business Interruption Insurance: lost income and expenses
resulting from property damage or loss. e.g. fire forces closure
for few months, this insurance covers salaries, taxes, rents, and
net profits that would have been earned.

Very challenging to assess / estimate correlations between loss
processes in such specialty risk classes!
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Application Context

A more general Insurance example arising in the context of
Solvency II according to the PRA:

The PRA expects firms using an approved internal or partial
internal model to calculate their SCR to report the internal
model outputs via XBRL using the relevant templates and

technical architecture documentation provided in the
Appendices. The templates capture selected percentiles of the
probability distributions for specified variables (eg risk drivers

and lines of business) as well as some information (eg
correlation factors) relevant for the PRA to monitor internal

models. ...

[Supervisory Statement — SS25/15 Solvency II: Regulatory
reporting, internal model outputs October 2018 (Updating July
2018)]
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Application Summary

Example: an insurer needs to complete a correlation matrix to
integrate different businesses and risks in the context of
Solvency II, where a firm has a hybrid partial IM (Internal
Model) and SF (standard formula) composed of

• an IM module,
• some complete SF modules, and
• an incomplete SF module (market risk) where one or more

of the submodules have been modelled internally.
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Application Summary
The correlations between the SF elements (grey cells) are
specified by regulations, and the firm has calculated some
coefficients (white cells) but needs to complete the green
entries according to a prescribed integration techniques.
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Application Summary

One of the prescribed integration techniques for completing the
missing entries requires two steps:

• first, determining appropriate upper and lower bounds
(based on the firm’s risk profile) for the missing correlations
and

• second, an optimization step to find the completion such
that no other set of correlation coefficients results in a
higher SCR, while keeping the matrix positive semi-definite

[Solvency II Delegated Regulation ((EU) 2015/35) Annex
XVIII(C) [23]] ... also known as Integration Technique 2, IT2.
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Application Summary
In banking and insurance applications there are many business
units with many BU-specific risks as well as different numbers
of risk families

• Correlation matrices for each BuRT can have hundreds of
columns!

• Many of the correlations between diverse BuRT’s are
completely unknown!

We want to complete the partial correlation matrix Σ̄ to a
fully specified correlation matrix; that is, since the diagonal
is fully specified as ones, to a positive definite matrix.

• Many completions are possible ⇒ introduces uncertainty
around the range of potential capital outcomes!

• Completion of most interest is usually a best-estimate
completion in some sense.

• A good candidate is that completion which has maximum
determinant !
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Overview

• Correlation matrices are real, symmetric positive
semidefinite matrices with ones on the diagonal....

• Often in practice one encounters ...
a matrix that is supposed to be a correlation matrix but for
a variety of possible reasons is not...
e.g. missing data in some of the records...

CLASSIC PROBLEM: So if we have somehow obtained a
complete approximate correlation matrix that does not satisfy
symmetry or positive semidefiniteness how do we obtain a
correlation matrix... ?
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Nearest Correlation Matrix Problems

One solution is to compute the
“NEAREST CORRELATION MATRIX”:

i.e. find the nearest correlation matrix X to a given
symmetric matrix A ∈ Rn×n that is the solution to

min
{

1
2
||A − X ||2F : X = X T , X ≥ 0, Diag(X ) = e

}

where for symmetric matrices X and Y :

• X ≥ Y here denotes that X − Y is positive semidefinite,
• Diag(X ) is the vector of diagonal elements of X ,
• e is the vector of ones, and
• ||X ||F = trace(X T X )1/2 is the Frobenius norm.
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Nearest Correlation Matrix Problems

NOTE: since Rn×n is a Hilbert space with inner product
⟨X ,Y ⟩ = trace(X T Y ) and the constraints are closed convex sets
⇒ this optimization program admits a unique solution, see e.g.
[Deutsch, 2001]

We still need to find a solution...NOT CLOSED FORM

• Introducing auxiliary variables one could reformulate this
problem as a semidefinite program or second order cone
program.

⇒ interior point algorithm solutions can be attempted!

However: if n is large direct interior point methods struggle!
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Nearest Correlation Matrix Problems
Numerous works propose numerical solutions via projections:

A lot of the literature is concerned with ad hoc methods
that are not guaranteed to solve the problem!

Can try alternating projection approaches of
[Dykstra, 1983] & [Higham, 2002] such as:

• [Knol and ten Berge, 1989] write X = Y T Y and iteratively
minimize the objective function over each unit 2-norm
column of Y .

• [Lurie and Goldberg, 1998] adopt a GaussNewton method
to minimize ||A − RT R||2F , where matrix R is upper
triangular with columns of unit 2-norm.

If they converge: these type of alternating
projections converge at best linearly!
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Nearest Correlation Matrix Problems
[Qi and Sun,2006] recognized this problem as a special case of
the following convex optimization problem

min
1
2
||x0 − x ||2

s.t . Ax = b
x ∈ K

where
• K ⊆ X is a closed convex subset in a Hilbert space X
• Space X is endowed with an inner product ⟨·, ·⟩ and its

induced norm ∥·∥
• A : X 7→ Rn is a bounded linear operator,
• b ∈ Rn and
• x0 ∈ X are given data.

This problem is also known as the best approximation from a
closed convex set in a Hilbert space.
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Nearest Correlation Matrix Problems

Under this general formulation of [Qi and Sun,2006] one has
the connection to the original problem by setting:

• X = Sn the space of symmetric n × n matrices with real
values.;

• K = Sn
+ the cone of n × n positive semi-definite matrices

with real values in Sn.;
• b = e the vector of ones.;
• x0 = A; and
• AX = diag(X ) vector of all diagonal elements of X ∈ Sn.
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Nearest Correlation Matrix Problems
[Deutsch, Li and Ward,1997] demonstrated that the unique
solution x∗ of this generalised problem statement has
representation:

x∗ = ΠK (x0 +A∗y∗)

with
• ΠK (·) the metric projection operator onto K under inner

product ⟨·, ·⟩;
• A∗ is the adjoint of A; and
• y∗ is the solution of equation

AΠK (x0 +A∗y) = b,

This representation holds: iff the STRONG Canonical Hull
Intersection Property (CHIP) holds for the set

{
K ,A−1(b)

}
...

see [Deutsch, Li and Ward,1997]
• REMARK: it can be challenging to verify in general!
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Nearest Correlation Matrix Problems
Alternatively a sufficient condition for this solution form can be
more readily verified and is given by the condition

b ∈ ri (A(K ))

where
• A(K ) is the data cone when K is a cone in X ; and
• ri(·) is the relative interior.

Recall: the relative interior of a set S is defined as its interior within
the affine hull of S.

ri(S) := {x ∈ S : ∃ϵ > 0,Nϵ(x) ∩ aff (S) ⊆ S},

where

• aff (S) is the affine hull of S, and

• Nϵ(x) is a ball of radius ϵ centered on x .

• Any metric can be used for the construction of the ball; all
metrics define the same set as the relative interior.
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Nearest Correlation Matrix Problems
Applying this condition a provably quadratically convergent solution
was developed in [Qi and Sun,2006]

• To achieve this they dualized the linear constraints in the nearest
correlation matrix problem... to produce UNCONSTRAINED
convex optimization problem:

min
y∈Rn

f (y) :=
1
2
||(A + diag(y))+||2F − eT y

where

• diag(y) for y ∈ Rn denotes the diagonal matrix whose elements
are those of the vector y

• diag(A) for A ∈ Rn×n denotes diag([a11,a12, . . . ,ann])

• (·)+ is an operator projecting onto positive semidefinite matrices:
for symmetric C ∈ Rn×n with spectral decomposition C = QΛQT

(QT Q = I, Λ = diag(λi))... then

(C)+ = Q diag(max(λi , 0)) QT

is nearest positive semidefinite matrix to C in Frobenius norm.
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Nearest Correlation Matrix Problems
[Malick, 2004] proved the following Lemma which then allowed [Qi and Sun,
2006] to show that a gradient based solution for the dual problems results
and it achieves quadratic convergence...

Lemma
The dual problem has the properties:

• f is convex continuously differentiable and has a unique minimizer...

• the gradient ∇f is given by

∇f (y) = Diag ((A + diag(y))+)− e

and is Lipschitz continuous with Lipschitz constant 1.

• the solutions y∗ of the dual problem and X∗ of the primal problem are
related by

X∗ = (A + diag(y∗))+

• One can interpret this result as showing that the original constrained
problem with (n2 − n)/2 variables is equivalent to an unconstrained
problem with just n variables

A quadratically convergent solution is developed....
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Overview

Approach 2: In this work we consider an alternative related
problem....
not exactly falling in category of problems explained above...

We are concerned with problems in which the missing values
are in the correlation matrix itself.

• Some of the matrix entries are known, having been:
• estimated ;
• prescribed by regulations; or
• assigned by expert judgement,

however, the other entries are unknown!

Nearest correlation matrix solutions will preclude this
important case as the projections required distort all
elements!
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Overview
• The aim is to fill in the missing entries in order to produce a

correlation matrix
• Of course there are, in general, many possible

completions!!!

For example, the partially specified matrix

A =

[
1 a12

a12 1

]
is a correlation matrix for any a12 such that |a12| ≤ 1.

• Our focus is on the completion with maximal
determinant.

• given by a12 = 0 in this example.

It is always unique when completions exist!
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Correlation Completion via MaxDet
MaxDet has several useful theoretical properties:

1 Existence and uniqueness: if positive semidefinite completions
exist then there is exactly one MaxDet completion [Grone et
al., 84].

2 Maximum entropy model : MaxDet is the maximum entropy
completion for the multivariate normal model, where
maximum entropy is a principle of favouring the simplest
explanations [Good,63].
Aligned with Solvency II Standard Formula

3 Maximum likelihood estimation: MaxDet is the maximum
likelihood estimate of the correlation matrix of the unknown
underlying multivariate normal model.

4 Analytic center : MaxDet is the analytic centre of the feasible
region described by the positive semidefiniteness
constraints, where the analytic centre is defined as the point
that maximizes the product of distances to the defining
hyperplanes [Vandenberghe et al, 98].

37 / 67



Correlation Completion via MaxDet
MaxDet has several useful theoretical properties:

1 Existence and uniqueness: if positive semidefinite completions
exist then there is exactly one MaxDet completion [Grone et
al., 84].

2 Maximum entropy model : MaxDet is the maximum entropy
completion for the multivariate normal model, where
maximum entropy is a principle of favouring the simplest
explanations [Good,63].
Aligned with Solvency II Standard Formula

3 Maximum likelihood estimation: MaxDet is the maximum
likelihood estimate of the correlation matrix of the unknown
underlying multivariate normal model.

4 Analytic center : MaxDet is the analytic centre of the feasible
region described by the positive semidefiniteness
constraints, where the analytic centre is defined as the point
that maximizes the product of distances to the defining
hyperplanes [Vandenberghe et al, 98].

37 / 67



Correlation Completion via MaxDet
MaxDet has several useful theoretical properties:

1 Existence and uniqueness: if positive semidefinite completions
exist then there is exactly one MaxDet completion [Grone et
al., 84].

2 Maximum entropy model : MaxDet is the maximum entropy
completion for the multivariate normal model, where
maximum entropy is a principle of favouring the simplest
explanations [Good,63].
Aligned with Solvency II Standard Formula

3 Maximum likelihood estimation: MaxDet is the maximum
likelihood estimate of the correlation matrix of the unknown
underlying multivariate normal model.

4 Analytic center : MaxDet is the analytic centre of the feasible
region described by the positive semidefiniteness
constraints, where the analytic centre is defined as the point
that maximizes the product of distances to the defining
hyperplanes [Vandenberghe et al, 98].

37 / 67



Correlation Completion via MaxDet
MaxDet has several useful theoretical properties:

1 Existence and uniqueness: if positive semidefinite completions
exist then there is exactly one MaxDet completion [Grone et
al., 84].

2 Maximum entropy model : MaxDet is the maximum entropy
completion for the multivariate normal model, where
maximum entropy is a principle of favouring the simplest
explanations [Good,63].
Aligned with Solvency II Standard Formula

3 Maximum likelihood estimation: MaxDet is the maximum
likelihood estimate of the correlation matrix of the unknown
underlying multivariate normal model.

4 Analytic center : MaxDet is the analytic centre of the feasible
region described by the positive semidefiniteness
constraints, where the analytic centre is defined as the point
that maximizes the product of distances to the defining
hyperplanes [Vandenberghe et al, 98].

37 / 67



Correlation Completion via MaxDet
When considering MaxDet solutions for a correlation matrix:

• we have a simple upper bound; and
• sufficient conditions for existance and uniqueness

Upper Bound:
• The determinant of a correlation matrix is at most 1 via Hadamard’s

inequality.

Let matrix A = [aij ] be an n × n positive definite matrix.
Then:

detA ≤ a11 · · · ann

with equality iff A is diagonal.

Conditions for Existence: [Grone et al., 84] showed a partially specified
Hermitian matrix with specified positive diagonal entries and positive principal
minors (where specified) can be completed to a positive definite matrix
regardless of the values of the entries ...

• iff the undirected graph of the specified entries
(ignoring the leading diagonal) is chordal.
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Correlation Completion via MaxDet
• A graph is chordal if every cycle of length ≥ 4 has a chord,

which is an edge that is not part of the cycle but connects two
vertices of the cycle.

• If the graph is not chordal, then whether a positive symmetric
definite completion exists depends on the specified entries.

• All the sparsity patterns considered in this work are chordal ⇒
a positive definite symmetric completion is possible!!!

Adjacency graph for the case in previous 2 BU example below:

z1

x1 y1

x2 y2

[Grone et al. 84] showed that if a positive definite completion exists
then there is a unique matrix in the class of all positive definite
completions whose determinant is maximal. 39 / 67



Correlation Completion via MaxDet
Dealing with large matrices with block patterns of specified and
unspecified entries, it is convenient to introduce the definition of
a “block chordal” graph.

Block Chordal Graphs:

• A block is a subgraph which is complete in terms of
edges (a clique).

• Two blocks are connected by an edge if every vertex has
an edge to every other vertex, so the two blocks
considered together also form a clique.

• A graph is block chordal if every cycle of blocks of length
≥ 4 has a chord.

• Finally, a block chordal graph is also chordal since every
block is either fully specified or fully unspecified, so
collapsing each block into one node means that we do
not lose any information in the graph.
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MaxDet and the Dual Covariance Selection

[Dempster, 72] proposed a related problem known as
covariance selection

Covariance selection: aims to simplify the covariance structure
of a multivariate normal population by setting elements of the
inverse of the covariance matrix to zero.

• The statistical interpretation is that certain variables are
set to be pairwise conditionally independent.

[Dahl et al, 08] and [Vandenberghe et al, 98] show that
MaxDet completion and covariance selection are duals!
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MaxDet and the Dual Formulation
Another way to see that a determinant-maximizing completion
must have zeros in the inverse corresponding to the free
elements of Σ is by a perturbation argument.

We need the following lemma [Chan, 84].

Lemma
For v ,w , x , y ∈ Rn,

det(I + vxT + wyT ) = (1 + vT x)(1 + wT y)− (vT y)(wT x).

Using the lemma, we consider how the determinant of a symmetric
positive definite matrix A ∈ Rn×n changes when we perturb aij (and
aji , by symmetry).
Perturbed Matrix: let

A(ϵ) = A + ϵ(eieT
j + ejeT

i ),

where ei is the i th column of the identity matrix.
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MaxDet and the Dual Formulation
Let B = A−1 and partition B = [b1, . . . , bn]. Apply the lemma:

det A(ϵ) = det(A(I + ϵ(bieT
j + bjeT

i )))

= det(A)det(I + ϵ(bieT
j + bjeT

i ))

= det(A)
[
(1 + ϵbT

i ej)(1 + ϵbT
j ei)− ϵ2(bT

i ei)(bT
j ej)

]
= det(A)

[
(1 + ϵbji)(1 + ϵbij)− ϵ2biibjj

]
= det(A)

(
1 + 2ϵbij + ϵ2(b2

ij − biibjj)
)
.

We want to know when det A(0) is maximal. Since

d
dϵ

det A(ϵ)|ϵ=0 = 2 det(A)bij ,

we need bij = 0 for a stationary point at ϵ = 0, and from

d2

dϵ2 det A(ϵ)|ϵ=0 = 2 det(A)(b2
ij − biibjj) < 0

(since B is positive definite), we see that when bij = 0, the quadratic
function det A() has a maximum at = 0.
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MaxDet and the Dual Covariance Selection

In general, solving the MaxDet completion problem
(or, equivalently, the covariance selection problem) requires
solving a convex optimization problem on the set of positive
definite matrices [Dahl et al, 08].

• We develop explicit, easily implementable solutions for
some practically important cases arising in the
insurance application.

Let Σ denote the solution of the MaxDet completion problem for
the partially-specified correlation matrix Σ̄.

We give a result for an L-shaped pattern of unspecified
entries in Σ̄.

Note that we do not require a unit diagonal, so it applies more
generally than just to correlation matrices.
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MaxDet and the Dual Covariance Selection

Theorem

Consider the symmetric partially specified matrix

Σ̄ =


n1 n2 n3 n4

n1 A11 B C D
n2 BT A22 E F
n3 CT ET A33 G
n4 DT F T GT A44

 ∈ R(n1+n2+n3+n4)×(n1+n2+n3+n4),

where C, E, and F are unspecified, the diagonal blocks Aii ,
i = 1 : 4 are all positive definite, and all specified principal
minors are positive.

The maximal determinant completion is

C = DA−1
44 GT , F = BT A−1

11 D, E = FA−1
44 GT .
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MaxDet and the Dual Covariance Selection

Brief comments on Proof:
• The result can be derived by permuting Σ̄ so that the

unspecified matrices appear in the block (1,3), (1,4), and
(2,4) positions and then applying the results of
[Dym et al, 81] on completion of block banded matrices.

• The result can also be obtained from
[Johnson and Lundquist, 93], in which the unspecified
elements of the MaxDet completion are given elementwise
in terms of the clique paths in the graph of the specified
elements.

Alternatively, we develop an elementary proof based on
Gaussian elimination, using the property that Σ−1 will contain
zeros in the positions of the unspecified entries in Σ̄.

48 / 67



Basic Proof Steps
• It is easy to check that the graph of the specified entries is

block chordal, and therefore a unique determinant
maximizing positive definite completion exists!

To find it, we need to solve the linear system
A11 B C D
BT A22 E F
CT ET A33 G
DT F T GT A44




X1
X2
X3
X4

 =


Γ1
Γ2
Γ3
Γ4

 ,

that is,

A11X1 + BX2 + CX3 + DX4 = Γ1, (1)

BT X1 + A22X2 + EX3 + FX4 = Γ2, (2)

CT X1 + ET X2 + A33X3 + GX4 = Γ3, (3)

DT X1 + F T X2 + GT X3 + A44X4 = Γ4, (4)

by Gaussian elimination in order to identify the inverse of the
matrix Σ̄. ...steps of the solution in our paper...
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Computation Efficiency and Accuracy
Accuracy and Efficiency of Computation: should be
evaluated as follows, avoiding explicit computation of matrix
inverses.

Compute Cholesky factorizations:
(decomposed into lower triangular matrix R)

• A11 = RT
11R11 and

• A44 = RT
44R44,

then evaluate unspecified matrix components according to:

C = (DR−1
44 )(R−T

44 GT ), F = (BT R−1
11 )(R−T

11 D), E = (FR−1
44 )(R−T

44 GT ).

Each of the terms in parentheses should be evaluated as the solution
of a triangular linear system with multiple right handsides.

• The term R−T
44 GT can be calculated once and reused.
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MaxDet and the Dual Covariance Selection

We identify two useful special cases.

Corollary

Consider the symmetric matrix


n1 n2 n3

n1 A11 B C
n2 BT A22 E
n3 CT ET A33

 ∈ R(n1+n2+n3)×(n1+n2+n3),

where E is unspecified, all the diagonal blocks are positive
definite, and all specified principal minors are positive.

The maximal determinant completion is E = BT A−1
11 C.
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MaxDet and the Dual Covariance Selection

Corollary

Consider the symmetric matrix


n1 n2 n3

n1 A11 B C
n2 BT A22 E
n3 CT ET A33

 ∈ R(n1+n2+n3)×(n1+n2+n3),

where C is unspecified, all the diagonal blocks are positive
definite, and all specified principal minors are positive.

The maximal determinant completion is C = BA−1
22 E.
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MaxDet and the Dual Covariance Selection

Now we consider a pattern of unspecified elements that arises
when (for example) an insurance company has four business
units where correlations between BU-specific risks are known

• described by the specified blocks A11, A22, A33 and A44 and
• all the correlations are known for the first group of risks

(for example, risk drivers such as interest rates or
exchange rates).

So here we have a complete first block row and column
⇒ this case cannot be obtained by permuting rows and
columns in the previous Theorem.
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MaxDet and the Dual Covariance Selection
Theorem

Consider the symmetric matrix


n1 n2 n3 n4

n1 A11 B C D
n2 BT A22 E F
n3 CT ET A33 G
n4 DT F T GT A44

 ∈ R(n1+n2+n3+n4)×(n1+n2+n3+n4),

where E, F , and G are unspecified, all the diagonal blocks are
positive definite, and all specified principal minors are positive.

The maximal determinant completion of the matrix is

E = BT A−1
11 C, F = BT A−1

11 D, G = CT A−1
11 D.

Finally, we consider the case where C, E and F are
unspecified, and B and G are partly specified.
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MaxDet and the Dual Covariance Selection
Theorem

Consider the symmetric matrix

Σ̄ =


n1 n2 n3 n4

n1 A11 B C D
n2 BT A22 E F
n3 CT ET A33 G
n4 DT F T GT A44

 ∈ R
(n1+n2+n3+n4)×(n1+n2+n3+n4),

where C, E, and F are unspecified, B and G are partly specified (possibly
fully unspecified), all the diagonal blocks are positive definite, all specified
principal minors are positive, and the graph of the specified entries is block
chordal.
If B and G are fully unspecified then the maximal determinant completion of
the matrix is

Σ =


n1 n2 n3 n4

n1 A11 0 0 D
n2 0 A22 0 0
n3 0 0 A33 0
n4 DT 0 0 A44

. (5)

Otherwise, the maximal determinant completion of B and G is independent
of the entries in D.
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Conclusions
• We have derived explicit solutions for completions with maximal

determinant of a wide class of partially specified correlation
matrices that arise in the context of insurers calculating
economic capital requirements.

• Further results are contained in paper for other patterns...

• The patterns supported are block diagonal, with either
cross-shaped or (inverted) L-shaped gaps on the off-diagonal.

• The solutions are easy to evaluate, being expressed in terms of
products and inverses of known matrices.

• Possible directions for future work include developing explicit
solutions for more general patterns of unspecified entries and
allowing semidefinite diagonal blocks and zero principal minors.

Please see further details in:

Georgescu D. I., Higham N.J. and Peters G.W. (2018)
“Explicit Solutions to Correlation Matrix Completion Problems, with an

Application to Risk Management and Insurance”
Royal Society Open Science. (to appear)
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MaxDet and the Dual Covariance Selection

Brief comments on Proof:
• The result can be derived by permuting Σ̄ so that the

unspecified matrices appear in the block (1,3), (1,4), and
(2,4) positions and then applying the results of [Dym et al,
81] on completion of block banded matrices.

• The result can also be obtained from [Johnson and
Lundquist, 93], in which the unspecified elements of the
MaxDet completion are given elementwise in terms of the
clique paths in the graph of the specified elements.

Alternatively, we develop an elementary proof based on
Gaussian elimination, using the property that Σ−1 will contain
zeros in the positions of the unspecified entries in Σ̄.
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Basic Proof Steps
• It is easy to check that the graph of the specified entries is

block chordal, and therefore a unique determinant
maximizing positive definite completion exists!

To find it, we need to solve the linear system
A11 B C D
BT A22 E F
CT ET A33 G
DT F T GT A44




X1
X2
X3
X4

 =


Γ1
Γ2
Γ3
Γ4

 ,

that is,

A11X1 + BX2 + CX3 + DX4 = Γ1, (6)

BT X1 + A22X2 + EX3 + FX4 = Γ2, (7)

CT X1 + ET X2 + A33X3 + GX4 = Γ3, (8)

DT X1 + F T X2 + GT X3 + A44X4 = Γ4, (9)

by Gaussian elimination in order to identify the inverse of the
matrix Σ̄.
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Basic Proof Steps
In this system we can think of C, E , and F as representing any
positive definite completions, so that the coefficient matrix is
positive definite.

• We find the determinant maximizing completions by
enforcing zeros in relevant blocks of the inverse.

The following patterns arise frequently in the working below so we
assign them variable names to condense the formulae:

B = B − DA−1
44 F T ,

C = C − DA−1
44 GT ,

E = E − FA−1
44 GT ,

F = F − BT∆D,

G = G − CT∆D,

K = E − BT∆C,
M = A−1

44 + A−1
44 DT∆DA−1

44 ,

∆ = (A11 − DA−1
44 DT )−1,

Φ = (A22 − FA−1
44 F T − BT∆B)−1,

Ξ = (A33 − GA−1
44 GT − CT∆C − KTΦK)−1.

• Inverses in definitions of ∆, Φ, and Ξ exist since matrices being
inverted are Schur complements arising in block elimination of
the positive definite matrix Σ̄, so are themselves positive definite.

62 / 67



Basic Proof Steps
We first solve for X4 in (9), to obtain

X4 = A−1
44 (Γ4 − DT X1 − F T X2 − GT X3),

and substitute this expression into (6) to obtain

A11X1 + BX2 + CX3 + DA−1
44 (Γ4 − DT X1 − F T X2 − GT X3) = Γ1.

We can then express X1 and X4 in terms of X2 and X3 only:

X1 = (A11 − DA−1
44 DT )−1

(
Γ1 − DA−1

44 Γ4 − (B − DA−1
44 F T )X2 − (C − DA−1

44 GT )X3

)
= ∆(Γ1 − DA−1

44 Γ4 − BX2 − CX3) (10)

and

X4 = A−1
44

(
Γ4 − DT∆(Γ1 − DA−1

44 Γ4 − BX2 − CX3)− F T X2 − GT X3

)
= A−1

44

(
− DT∆Γ1 + Γ4 + DT∆DA−1

44 Γ4 − (F T − DT∆B)X2 − (GT − DT∆C)X3

)
= A−1

44

(
− DT∆Γ1 + Γ4 + DT∆DA−1

44 Γ4 −FT X2 − GT X3

)
. (11)
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Basic Proof Steps
Working with (7) next, and separating the X2 and X3 variables,
we have:

A22X2 = Γ2 − BT X1 − EX3 − FX4

= Γ2 − BT∆(Γ1 − DA−1
44 Γ4 − BX2 − CX3)− EX3

− FA−1
44 (−DT∆Γ1 + Γ4 + DT∆DA−1

44 Γ4 −FT X2 − GT X3)

= −(BT − FA−1
44 DT )∆Γ1 + Γ2 − (F − BT∆D)A−1

44 Γ4

+ (BT∆B + FA−1
44 FT )X2 −

(
E − FA−1

44 GT − (BT − FA−1
44 DT )∆C

)
X3

= −BT∆Γ1 + Γ2 −FA−1
44 Γ4 + (BT∆B + FA−1

44 FT )X2 − (E − BT∆C)X3.

Therefore

(A22 − BT∆B − FA−1
44 F

T )X2 = −BT∆Γ1 + Γ2 −FA−1
44 Γ4 −KX3.

Notice that the left-hand side simplifies to one of our inverse
equations:

(A22−BT∆B−FA−1
44 F

T )X2 = (A22−FA−1
44 F T−BT∆B)X2 = Φ−1X2,
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Basic Proof Steps

X2 = Φ
(
− BT∆Γ1 + Γ2 −FA−1

44 Γ4 −KX3
)
. (12)

Substituting (12) into the expressions (10) and (11) we have

X1 = (∆+∆BΦBT∆)Γ1 −∆BΦΓ2 −∆(D − BΦF)A−1
44 Γ4 −∆(C − BΦK)X3,

X4 = A−1
44 (−DT + FTΦBT )∆Γ1 − A−1

44 FTΦΓ2 + (M+ A−1
44 FTΦFA−1

44 )Γ4

+ A−1
44 (FTΦK − GT )X3. (13)

Finally, we substitute these expressions into (8) to obtain X3 in
terms of Γ1, Γ2, Γ3, and Γ4 which is simplified to

Ξ−1X3 = (−CT +KTΦBT )∆Γ1 −KTΦΓ2 + Γ3

+ (KTΦFA−1
44 − GM+ CT∆DA−1

44 )Γ4. (14)
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Basic Proof Steps
The only blocks of interest in the inverse of Σ̄ are those that we
denote X3(Γ1) and X3(Γ2), which are defined by

X1
X2
X3
X4

 =


A11 B C D
BT A22 E F
CT ET A33 G
DT F T GT A44


−1 

Γ1
Γ2
Γ3
Γ4

 =


× × × ×
× × × ×

X3(Γ1) X3(Γ2) × ×
× × × ×



Γ1
Γ2
Γ3
Γ4

 ,

(15)

where “×” denotes a block that is not of interest.

Comparing (14) and (15), we find that

X3(Γ2) = −ΞKTΦ,

and we require this expression to be zero for the maximal
determinant completion.

• Since Φ and Ξ are inverses, they cannot be zero, therefore
we require KT = 0.
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Basic Proof Steps
Similarly, we have

X3(Γ1) = Ξ(−CT +KTΦBT )∆,

and since KT = 0 (and ∆ and Ξ are nonsingular) we require that
C = 0, which implies that

C = DA−1
44 GT . (16)

The equations C = 0 and K = 0 imply E = 0, and hence

E = FA−1
44 GT .

Denoting by Π the permutation matrix that reverses the order of the
blocks in Σ̄, we have

ΠT Σ̄Π =


A44 GT F T DT

G A33 ET CT

F E A22 BT

D C B A11

 .

The block F T now takes the role of C in the original matrix, so from
(16) we obtain, after transposing, F = BT A−1

11 D.
We have now found the MaxDet completion!
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