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General modelling steps:

Determine a statistical model which describes P&L dynamics.
Example: GARCH(1,1) parameters estimated using MLE over
a given estimation window.

Selected a risk measure θ (e.g. VaR), and estimate a θ-point
forecast at a fixed horizon.

Test the model: Create a time series of forecasts obtained
using a rolling window and compare with realized P&L at
each point (backtesting).

Apply some statistical test to interpret the backtesting results
(i.e. assess, with certain confidence level, whether the model
captures the true risk).
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In the case of CCP margin models, it may look like this:

CCP’s
Statistical model
describing P&L
dynamics

FHS with EWMA
volatility estimates
over a +5yr window.

Estimate a φ point
forecast for a fixed
horizon.

VaR of CVaR, 2 to
7 day MPOR, 99%
or 99.5% confidence
level

Backtesting Count exceptions
over >1yr window

Statistical test to in-
terpret the backtest-
ing results

Kupiec’s and
Christoffersen’s
tests.
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Potential sources of model risk

CCP’s Model risk
Statistical model
describing P&L
dynamics

FHS with EWMA
volatility estimates
over a +5yr window.

Wrong model, pa-
rameter estimation
error

Estimate a φ point
forecast for a fixed
horizon.

VaR of CVaR, 2 to
7 day MPOR, 99%
or 99.5% confidence
level

Inadequate risk
measure or MPOR

Backtesting Count exceptions
over 2 to 5yr
window

Inadequate testing
model

Statistical test to in-
terpret the backtest-
ing results

Kupiec’s and
Christoffersen’s
tests.
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Questions

CCP’s Model risk Questions
Statistical model
describing P&L
dynamics

FHS with EWMA
volatility estimates
over a +5yr window.

Wrong model, pa-
rameter estimation
error

Can we quantify un-
certainty around the
choice of parame-
ters?

Estimate a φ point
forecast for a fixed
horizon.

VaR of CVaR, 2 to
7 day MPOR, 99%
or 99.5% confidence
level

Inadequate risk
measure or MPOR

Backtesting Count exceptions
over 2 to 5yr
window

Inadequate testing
model

How powerful are
the tests? Is back-
testing the right ap-
proach?

Statistical test to in-
terpret the backtest-
ing results

Kupiec’s and
Christoffersen’s
tests.
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Filtered samples

Aim is to incorporate a volatility updating scheme to increase
the sensitivity of historical simulation models to the arrival of
new information.

Common approaches are variants of the Filtered Historical
Simulation (FHS) methods suggested by John Hull and Allan
White (1998) and Barone-Adesi, Bourgoin and Giannopoulos
(1998).

Examples: initial margin methodologies for interest rate
products used by LCH Swapclear, CME and Eurex (Gregory,
2014).
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FHS
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EWMA volatility estimates

The conditional volatility estimates derived from an EWMA
volatility updating scheme or from a GARCH process.

EWMA recursive formula:

σ2
t+1 = λσ2

t + (1− λ)r2
t (1)

The decay factor, λ ∈ [0, 1], determines the responsiveness of
the process to the arrival of new information.
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FHS (Hull-White)
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FHS (Hull-White)

Pedro Gurrola-Perez & Michael Wood Bank of England

Model uncertainty in FHS risk models



The problem FHS and backtesting models Estimating parameter uncertainty Conclusions References

Is backtesting (+ Kupiec + Christoffersen) the correct tool?

Figure : Backtesting of FHS VaR estimates for SPX using decay factors λ = 0.92 and
λ = 0.98. Both cases produce 5 exceptions (which is exactly what the model predicts
at 99.5% confidence). Both models pass the Kupiec’s and Christoffersen’s tests.
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By only looking at a sequence of 0’s and 1’s we discard a
large amount of information.

A dynamic model needs to be tested on its dynamic features;
e.g., how quickly it reacts to changes in volatility regime.

Some potential candidates:

Label Type of test Inputs
Hypothesis C Independence (Christoffersen, 1998) It (α)

tests CHP Multiple coverage UC [tail] (Colletaz, Hurlin and Perignon, 2012) It (α)
Haas Independence [duration-based] (Haas, 2001) It (α)
C-P CC [duration-based] (Christoffersen and Pelletier, 2004) It (α)
DQ CC [regression-based](Engle, Manganelli, 2004) It (α), qt (α)

Scoring Dowd (Dowd, 2005) ut , qt (α)
functions B-I (Blanco and Ihle , 1998) ut , qt (α)

APL Asymmetric piecewise linear score ut , qt (α)
RMSE Root mean square error ut , σt
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Analysis has shown the impact of FHS on higher moments
(Gurrola and Murphy, 2015), and the need of more sophisticated
testing tools (Gurrola, 2018). In particular,

Hypothesis tests are largely insensitive to the dynamics
resulting from different decay factors.

They tend to favor overreacting calibrations, especially at high
coverage levels, which is an undesirable outcome in terms of
the procyclicality.

Asymmetric piece-wise linear (APL) score functions improve
performance, which is in line with Gneiting (2012) (applying
scoring functions which are consistent for the α-quantile
functional).

Calibration and validation of the model cannot only rely on
backtesting, even when accounting for the size and duration of
the exceptions, and additional criteria needs to be considered.
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The problem: Quantify the impact of parameter uncertainty
on the output of VaR models that rely on EWMA volatility
estimates, including its sensitivity to the time period
considered.

Why it is important: Quantifying the uncertainty of those
outputs can help the risk manager take more informed and
transparent decisions about the amount of initial margin
required.

What we do: We apply a Bayesian approach to quantify
parameter uncertainty in EWMA-based VaR models.
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Why Bayesian?

Classical (frequentist) approach:

In general not well-suited to answer questions of parameter
uncertainty because the only uncertainty they deal with is in
sampling.
One typically identifies point estimates, such the MLE, of
certain model parameters and, in doing so, overlooks the
stochastic nature of the estimation of these parameters.

Bayesian estimation:

Point estimates for parameters are substituted by probability
distributions that describe the uncertainty surrounding the
estimation process.
Allows the modeller to incorporate their prior knowledge.
The outcome is a joint posterior distribution of the model
parameters and the projected portfolio outcomes.
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EWMA as an IGARCH

EWMA process is a particular case of an integrated GARCH
process (IGARCH), as defined by Engle and Bollerslev (1986). In
general, an IGARCH(1,1) process has the following specification:

σ2
t = ω0 + λσ2

t−1 + (1− λ)r2
t−1 (2)

rt ∼ G(0, σt)

where G(0, σt) is a standardized distribution and ω0 is the drift
parameter. In our analysis, we will assume the drift is zero, so that
the conditional volatility in (2) is an EWMA process.1

1Although a zero-drift IGARCH process has the undesirable property of
converging almost surely to zero (Nelson, 1990), this should not be a problem
when working at short term horizons.
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We expand the IGARCH specification with zero-drift by
converting the exogenous parameters λ and σ0 into internal
parameters that are modelled as random variables

(λ, σ0) ∼ p(λ, σ0)

(σ2
t |λ, σ0) = λtσ2

0 + (1− λ)
t∑

i=1

r2
i−1λ

t−i (3)

(rt |σ2
t ) ∼ G(0, σt)
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Let r̂i be a set of observed returns. We apply Bayes’ rule

p(λ, σ0|r̂1, ..., r̂T ) =
p(λ, σ0)× p(r̂1, ..., r̂T |λ, σ0)

p(r̂1, ..., r̂T )
(4)

This posterior distribution can then be used to forecast the next
unknown observable, rT+1. These forecasts are the posterior
predictive distributions and are expressed as a weighted average of
the model’s conditional predictions weighted by the posterior:

p(rT+1|r̂T , ..., r̂1) =

∫ ∞
0

∫ 1

0
p(rT+1|λ, σ0)p(λ, σ0|r̂T , ..., r̂1)dλdσ0

(5)
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We will assess:

The magnitude of the parameter uncertainty around λ for
some typical market risk factors,

The resulting uncertainty in the model’s forecasts and on its
accuracy,

The impact of market data sample size on the level of
uncertainty around λ.
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Data: daily returns covering a 12-year period, from 3 January 2005 to 30
December 2016.

(a) Aluminiun 3 Month forward relative returns

(b) AUS/USD FX spot rate relative returns
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Data: daily returns covering a 12-year period, from 3 January 2005 to 30
December 2016.

(c) Japan 10Y Bond yield absolute returns

(d) S&P 500 Index relative returns
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Prior distributions (chosen to match our prior information):

p(λ) is defined as a truncated normal distribution, with mean 0.95
and standard deviation 0.1, which is truncated outside the range
0.8 ≤ λ ≤ 1 (and re-normalised);

p(σ0) is defined as a gamma distribution, with shape parameter 2
and scale parameter 1, so that the peak value is at 1% and the
standard deviation is

√
2.

(e) The marginal prior p(λ) (f) The marginal prior p(σ0)
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Prior joint distribution:

(g) Contour plot (h) Joint distribution
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Likelihood function p(r̂0, ..., r̂T |λ, σ0):

Estimation based on the approach proposed by Nakatsuma
(1998): For each parameter pair (λ, σ0) we express the joint
distribution as a product of densities for each individual return,
where each density is conditioned on the preceding returns:

p(r̂0, ..., r̂T |λ, σ0) = p(r̂0|λ, σ0)× p(r̂1|r̂0, λ, σ0)× . . . (6)

. . . ×p(r̂T |r̂0, ..., r̂T−1, λ, σ0)
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Each of the individual terms on the left side can be calculated
from the model, using the recursive formula (1). For example, the
first term is

p(r̂0|λ, σ0) =
1√

2σ2
0π

exp

[
−r̂2

0

2σ2
0

]
(7)

The second term:

p(r̂1|r̂0, λ, σ0) =
1√

2σ2
1π

exp

[
−r̂2

1

2σ2
1

]
, where σ2

1 = λσ2
0 + (1− λ)r̂2

0

(8)
This procedure can be repeated until all terms in the right-hand
side of equation (6) are evaluated.
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Posterior distribution of the parameters p(λ, σ0|r̂0, ..., r̂T )

In models with larger parameter spaces this is typically
achieved by Markov-Chain Monte Carlo (MCMC) sampling.

Our parameter space is small enough to allow direct
computation of the posterior on a grid of values in parameter
space.

Grid consisting of 2,001 uniformly-spaced points between
λ = 0.8 and 1 (inclusive), and 1,501 uniformly-spaced points
between σ0 = 0 (exclusive) and an upper value that is 4%
where relative returns are used, or 8 bps where absolute
returns are used.

The posterior is calculated directly at each grid point in
parameter space and then normalising over the entire space.
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Marginal posterior (AUS/USD)

(i) λ (j) σ0
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Posterior p(λ, σ0)

(k) Contour (l) Joint
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Evolution over time of the mean and standard deviations of marginal
posteriors.

(m) Aluminium 3M (n) S&P 500

(o) Japan 10Y Bond (p) AUS/USD FX spot rate
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Evolution of the mean and standard deviation of the marginal posterior
distributions p(λ|data) for six selected time periods.
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The propagation of uncertainty into the model’s outcome
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(q) Aluminium 3 Month 1-day relative returns

(r) AUS/USD FX spot 1-day relative returns
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(s) Japan 10Y Bond yield 1-day absolute returns

(t) S&P 500 Index 1-day relative returns
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Dispersion of the marginal posterior distributions, using the standard
deviation of this distribution as a metric for parameter uncertainty.

Figure : Plots of the standard deviations of the posterior distributions
p(λ|r̂0, ..., r̂T ) for all six time periods and all four data series. The points have
been linearly joined only for illustration purposes.
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Bayesian inference provides a useful framework for modelling
parameter uncertainty in EWMA estimates.

The model specification appears unstable, which reduces
confidence in using the EWMA-VaR approach to accurately
estimate quantile measures of risk.

Propagation method causes more variation in prediction
uncertainty than changes in parameter uncertainty, over time.
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Understanding and monitoring such uncertainty may help
improving risk management practices in various ways. In the
case of CCPs, for example by

Considering richer processes for the evolution of returns.
Articulating a model risk tolerance by specifying what could be
the maximum acceptable amount of uncertainty around the
model outputs.
Monitoring uncertainty around outputs and use it as key
indicator of potential model failure.

The benefits of model accuracy should be balanced against
other priorities as, for example, the economic cost of calling
additional resources, or the importance of calibrating models
in a way that they are not prone to overreacting.
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Thank you!
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