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The general framework

Given

risk factors X = (X1, . . . ,Xd) ∼ FX, where

FX(x) = P (X1 ≤ x1, . . . ,Xd ≤ xd) ;

a financial position ψ(X);

a risk measure ρ;

the goal is

calculate ρ(ψ(X)).

Warning: ρ(ψ(X)) only depends on the joint pdf FX of X.

Note: if time matters, one can consider the process (Xt)t=1,...,T .



Current practice (?)

Given some risk factors X = (X1, . . . ,Xd), we proceed as follow:

Estimate the marginal d.f. Fi of each Xi, i.e.

Fi(x) = P(Xi ≤ x).

Find a copula C such that

X ∼ FX = C(F1, . . . ,Fd).

Calculate ρ(ψ(X)) either analytically or by means of a Monte-
Carlo simulation from the joint d.f. FX.



Sklar’s Theorem

Definition
For every d ≥ 2, a d–dimensional copula (shortly, a d–copula) C is
a d–dimensional distribution function whose univariate marginals are
uniformly distributed on [0, 1].

Theorem (Sklar, 1959)
Let (X1, . . . ,Xd) be a r.v. with continuous joint d.f. F and univariate
marginals F1, F2,. . . , Fd. Then there exists a unique copula C, such
that, for all x ∈ Rd,

F(x1, x2, . . . , xd) = C (F1(x1),F2(x2), . . . ,Fd(xd)) .

C is the d.f. of (F1(X1), . . . ,Fd(Xd)) and it equals

C(u1, . . . , ud) = F
(

F(−1)
1 (u1), . . . ,F(−1)

d (ud)
)
.



Example: the shape of copula models
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Student t, ρ = 0.164, ν = 4
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Student t, ρ = 0.164, ν = 8
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Tail dependence

The notion of tail dependence is related to the comovement of two r.v.’s
X and Y in the tails of their joint distribution. It makes mathematically
precise statements like

given X is extreme, what is the
conditional probability of Y being also extreme?

Examples:

In asset management, we are interested whether the drop of one
(or more) stocks may influence the behavior of the other stocks in
the portfolio (e.g., does diversification matter?).

In credit portfolios, we are interested whether the default of a firm
may increase or not the probability of default of other firms.

In environmental science, we are interested about the occurrence
of extreme events at multiple sites (e.g., flood risk maps).



Tail dependence coefficients

Let X and Y be continuous r.v.’s with d.f.’s FX and FY , respectively,
and copula C.
The upper tail dependence coefficient λU of (X,Y) is defined by

λU = lim
t→1−

P
(

Y > F(−1)
Y (t) | X > F(−1)

X (t)
)

= lim
t→1−

1− 2t + C(t, t)
1− t

;

and the lower tail dependence coefficient λL of (X,Y) is defined by

λL = lim
t→0+

P
(

Y ≤ F(−1)
Y (t) | X ≤ F(−1)

X (t)
)

= lim
t→0+

C(t, t)
t

provided that the above limits exist.



An application to financial time series
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Cluster Dendrogram
MSCI World Index

Tail-dependence based hierarchical clustering for the MSCI World Index Data according to complete linkage. Source: Morgan
Stanley Capital International (MSCI) Developed Markets Index: daily observations from 2002-06-04 to 2010-06-10). For more
details, see (D., Fernández-Sánchez, Pappadà, 2015).



Illustration: worst-case VaRα copula for d = 2
Let L1, L2 be random losses whose dependence is represented by the comonotonicity
copula M (left) and the copula C (right).

α

α

α

α

VaRα(L1) + VaRα(L2) ≤ supL1,L2
VaRα(L1 + L2)

(Makarov, 1981; Rueschendorf, 1982)



Illustration: upper comonotonicity

Let L1,L2 be random losses whose dependence is represented by the
patchwork copulas C1 (left) and C2 (right).

VaRC1
α (L1 + L2) = VaRC2

α (L1 + L2)

In the plots, we visualize random sample of 1000 realizations from the copula 〈B, CB〉M2 where B = [0, 0.8]2 , CB is a Frank
with Kendall’s tau equal to: 0.5 (left) and 0.75 (right). For more details, see (D., Fernández–Sánchez and Sempi, 2013).



Conditional Value-at-Risk

VaR focuses on the risk of an individual institution in isolation. How-
ever, a single institution’s risk measure does not necessarily reflect its
connection to overall systemic risk. Some institutions are individually
systemic – they are so interconnected and large that they can generate
negative risk spillover effects on others.

(Adrian and Brunnermeier, AER, 2016)

Given two r.v.’s X and Y , the Conditional Value–at–Risk (CoVaR, for
short) of Y given X can be generally defined by

CoVaRE(Y | X) = VaRβ(Y | X ∈ E),

where E is a Borel set of the real line and β ∈ (0, 1). Usually, E
represents the loss of X being at or above its VaR level.

(Adrian and Brunnermeier, AER, 2016)



Conditional Value-at-Risk and copulas

Let X and Y be profit/loss r.v.’s with continuous joint d.f. F, which can
be expressed as F = C(FX,FY).

For α, β ∈ (0, 1), we set

CoVaR=
α,β(Y | X) = VaRβ(Y | X = −VaRα(X)).

Since C coincides with the joint d.f. of (FX(X),FY(Y)) = (U,V), then

CoVaR=
α,β(Y | X) = VaRv∗(Y),

where v∗ = v∗(α, β,C) is computed via

v∗ = inf{v ∈ [0, 1] : FV|U=α(v) > β}. (1)



Conditional Value-at-Risk and copulas

When C is continuously differentiable, (1) can be rewritten as

v∗ = inf{v ∈ [0, 1] : ∂1C(α, v) > β}.

Moreover, CoVaR=
α,β(Y | X) fulfills

∂1C(α,FY(−CoVaR=
α,β(Y | X))) = β.

However, C ma not have first order partial derivatives everywhere!
Example: (X,Y) ∼ C(FX,FY), and P(X = ϕ(Y)) > 0.



Copulas with a singular component: A Eurozone case study

Maximal probability of joint defaults induced by CDS spread for Germany vs Portugal
(left) and Germany vs Greece (right) on December 12, 2012. Courtesy of J.F. Mai.
For more details, see (Mai and Scherer, 2014).



Conditional Value-at-Risk and copulas

To provide a more general definition of CoVaR=, we consider the left–
sided upper Dini derivative of C with respect to the first coordinate.
Specifically, for every u ∈ (0, 1] and v ∈ [0, 1], we set

D1C(u, v) = lim sup
h→0+

C(u, v)− C(u− h, v)

h
.

It is easy to show that, for every v ∈ [0, 1], KC(u, [0, v]) = D1C(u, v)
for almost all u ∈ [0, 1], where KC is a version of the conditional dis-
tribution of V given U, also known as Markov kernel of C.

Therefore, in order to calculate CoVaR=, we propose to use

v∗ = inf{v : D1 C(α, v) > β}.

(Bernardi, D. and Jaworski, 2017)



Example

For the independence copula Π2(u, v) = uv

v∗(α, β,Π2) = β

For the comonotonicity copula M2(u, v) = min(u, v)

v∗(α, β,M2) = α.

For the countermonotonicity copula W2(u, v) = max(u+v−1, 0)

v∗(α, β,W2) = 1− α.

In particular, for α = β, if (X,Y) ∼ Π2(F,G), (X′,Y ′) ∼ M2(F,G),
then

CoVaR=
α,α(Y | X) = CoVaR=

α,α(Y ′ | X′). /



Modified Conditional Value-at-Risk
For α, β ∈ (0, 1), we set

CoVaR≤α,β(Y|X) = VaRβ(Y | X ≤ −VaRα(X)).

If the continuous joint d.f. F of the random pair (X,Y) is expressed as
F = C(FX,FY), then

CoVaR≤α,β(Y | X) = VaRw∗(Y),

where w∗ solves the equation C(α,w∗) = αβ.
(Girard and Ergün, 2013)

If (X,Y) ∼ C(FX,FY) and (X′,Y ′) ∼ C′(FX′ ,FY′) with continuous
FX , FX′ , FY = FY′ , then C ≤ C′ implies

CoVaR≤α,β(Y | X) ≤ CoVaR≤α,β(Y ′ | X′). ,

(Mainik and Schaanning, 2015)



Example: EFGM copulas

(Left panel): Plot of v∗(α, β, CEFGM
θ ) (black line) and w∗(α, β, CEFGM

θ ) (black dotted line) for different θ values.

(Right panel): CoVaR=
α,β (Y | X) /VaRβ(Y) (continuous lines) and CoVaR≤

α,β
(Y | X) /VaRβ(Y) (dotted lines), for a

random pair (X, Y) ∼ CEFGM
θ (FX , FY ) with different marginals, namely Gaussian N (0, 1) (black), Student–t Tν (0, 1)

with ν = 4 (red), Skew–Normal SNλ (0, 1) with λ = 5 (green) and Skew Student–t STλ,ν (0, 1) with ν = 4 and λ = 5
(blue). Here, α = β = 0.05. For more details, see (Bernardi, D. and Jaworski, 2017).



Example: Frank copulas

(Left panel): Plot of v∗(α, β, CFr
θ ) (black line) and w∗(α, β, CFr

θ ) (black dotted line) for different θ values.

(Right panel): CoVaR=
α,β (Y | X) /VaRβ(Y) (continuous lines) and CoVaR≤

α,β
(Y | X) /VaRβ(Y) (dotted lines), for a

random pair (X, Y) ∼ CFr
θ (FX , FY ) with different marginals, namely Gaussian N (0, 1) (black), Student–t Tν (0, 1) with

ν = 4 (red), Skew–Normal SNλ (0, 1) with λ = 5 (green) and Skew Student–t STλ,ν (0, 1) with ν = 4 and λ = 5
(blue). Here, α = β = 0.05. For more details, see (Bernardi, D. and Jaworski, 2017).



Example: Gumbel copulas

(Left panel): Plot of v∗(α, β, CGu
θ ) (black line) and w∗(α, β, CGu

θ ) (black dotted line) for different θ values.

(Right panel): CoVaR=
α,β (Y | X) /VaRβ(Y) (continuous lines) and CoVaR≤

α,β
(Y | X) /VaRβ(Y) (dotted lines), for a

random pair (X, Y) ∼ CGu
θ (FX , FY ) with different marginals, namely Gaussian N (0, 1) (black), Student–t Tν (0, 1) with

ν = 4 (red), Skew–Normal SNλ (0, 1) with λ = 5 (green) and Skew Student–t STλ,ν (0, 1) with ν = 4 and λ = 5
(blue). Here, α = β = 0.05. For more details, see (Bernardi, D. and Jaworski, 2017).



Example: Clayton copulas

(Left panel): Plot of v∗(α, β, CMTC
θ ) (black line) and w∗(α, β, CMTC

θ ) (black dotted line) for different θ values.

(Right panel): CoVaRα,β (Y | X) /VaRβ(Y) (continuous lines) and CoVaR≤
α,β

(Y | X) /VaRβ(Y) (dotted lines), for a

random pair (X, Y) ∼ CMTC
θ (FX , FY ) with different marginals, namely Gaussian N (0, 1) (black), Student–t Tν (0, 1) with

ν = 4 (red), Skew–Normal SNλ (0, 1) with λ = 5 (green) and Skew Student–t STλ,ν (0, 1) with ν = 4 and λ = 5
(blue). Here, α = β = 0.05. For more details, see (Bernardi, D. and Jaworski, 2017).



Example: Marshall–Olkin copulas

For a, b ∈ (0, 1) the Marshall–Olkin copula is defined as

CMO
a,b (u, v) =

{
u1−av, ua ≥ vb,

uv1−b, ua < vb.
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Random sample of 2000 realizations from the Marshall–Olkin copula with parameters (0.5, 0.1) (left), (0.5, 0.5) (center), and
(0.5, 0.9) (right).



Example: Marshall–Olkin copulas

(Left panel): Plot of v∗(α, β, CMO
θ ) (black line) and w∗(α, β, CMO

θ ) (black dotted line) for θ = a = b.

(Right panel): CoVaR=
α,β (Y | X) /VaRβ(Y) (continuous lines) and CoVaR≤

α,β
(Y | X) /VaRβ(Y) (dotted lines), for a

random pair (X, Y) ∼ CMO
θ (FX , FY ) with different marginals, namely Gaussian N (0, 1) (black), Student–t Tν (0, 1) with

ν = 4 (red), Skew–Normal SNλ (0, 1) with λ = 5 (green) and Skew Student–t STλ,ν (0, 1) with ν = 4 and λ = 5
(blue). Here, α = β = 0.05. For more details, see (Bernardi, D. and Jaworski, 2017).



Example: Marshall–Olkin copulas

Given a, b ∈ (0, 1), for the Marshall–Olkin copula CMO
a,b , it follows

v∗(α, β,CMO
a,b ) =


βαa

1−a , 0 < β < (1− a)α(1−b)a/b,

αa/b, (1− a)α(1−b)a/b ≤ β ≤ α(1−b)a/b,

β1/(1−b), α(1−b)a/b < β < 1,

and

w∗(α, β,CMO
a,b ) =

{
βαa, 0 < β ≤ α(1−b)a/b,

β1/(1−b), α(1−b)a/b < β < 1.

In particular, it is interesting to note that

lim
α→0+

v∗(α, β,CMO
a,b ) = β

1
1−b = lim

α→0+
w∗(α, β,CMO

a,b ).

(Bernardi, D. and Jaworski, 2017)



Example: Archimedean copulas

For a (strict) Archimedean copula

Cϕ,ψ(u, v) = ψ(ϕ(u) + ϕ(v))

with ϕ(0) = +∞, and ϕ regularly varying at 0 with a negative index,
i.e. limt→0+

ϕ(tx)
ϕ(t) = x−d,

lim
α→0+

v∗(α, β,Cϕ,ψ) = lim
α→0+

w∗(α, β,Cϕ,ψ) = 0

with

lim
α→0+

v∗(α, β,Cϕ,ψ)

α
=
(
β−d/(d+1) − 1

)−1/d
,

lim
α→0+

w∗(α, β,Cϕ,ψ)

α
=
(
β−d − 1

)−1/d
.

(Bernardi, D. and Jaworski, 2017)



Multivariate Conditional Value-at-Risk

Let (X,Y) be a random vector. Let S be an upper1 Borel set in Rd,
which is interpreted as an hazard scenario.

The CoVaR of Y given that X ∈ S is defined as

CoVaRS
α,β(Y | X) = VaRβ(Y | X ∈ S),

where β ∈ (0, 1) and P(X ∈ S) = 1− α ∈ (0, 1).

It can be easily seen that

S = {z ∈ Rd
+ : ψ(z) ≥ 1},

for a continuous and increasing function ψ.

(Bernardi et al., 2018)

1If S is an upper set, then, for all x, y ∈ Rd, x ∈ S and y ≥ x (component-wise)
imply y ∈ S.



Example: hazard scenarios



Multivariate Conditional Value-at-Risk

Given α ∈ (0, 1) such that P(X ∈ S) = 1− α, for all y we have

P(Y ≥ y | X ∈ S) =
D̂(1− α,G(y))

1− α
,

where Y ∼ (1 − G) and D̂ is the bivariate survival copula associated
with (ψx(X),Y).

Thus,

CoVaRSx,β(Y | X) = G−1
(

(hD̂
1−α)−1((1− α)(1− β))

)
,

where hD̂
1−α(t) = D̂(1−α, t) is the section of the copula D̂ at the point

1− α, having range [0, 1− α].

(Bernardi et al., 2018)



CoVaR under AND scenario

Here, we are interested in the calculation of the conditional risk when
the conditioning event is an AND HS of type {X ≥ x}. Then

CoVaRα,β (Y | X ≥ x) = G−1
((

hĈ
u

)−1
((1− β) (1− α))

)
,

where G is the survival function of Y ,

hĈ
u (·) = Ĉ (u1, u2, . . . , ud, ·) ,

is the section of Ĉ, the survival copula of (X,Y), with respect to the
(d + 1)–component.

(Bernardi et al., 2018)



CoVaR under AND scenario: remark

CoVaRα,β (Y | X ≥ x) does not change when x is replaced by any
other point lying on the level curve

{y ∈ Rd : F(x) = 1− α}.

Let (X,Y) and (X′,Y ′) be random vectors with survival copulas
C and C′, respectively, and identical continuous marginal survival
functions. If C ≥ C′ (PLOD order), then

CoVaRα,β (Y | X ≥ x) ≥ CoVaRα,β
(
Y ′ | X′ ≥ x′

)
,

for FX (x) = 1− α and FX′ (x′) = 1− α, with x′ ≤ x.

(Bernardi et al., 2018)



CoVaR under AND scenario: example

Suppose that (X,Y) ∼ Ĉ(F1, . . . ,Fd,G) for a survival copula Ĉ of
Archimedean type, i.e. such that

Ĉ (u) = ϕ−1 (ϕ (u1) + · · ·+ ϕ (ud+1))

for a suitable strictly decreasing generator ϕ, with ϕ (0) = +∞.

Thus,

CoVaRα,β(Y | X ≥ x) = G−1 (
ϕ−1 [ϕ ((1− β) (1− α))− ϕ (1− α)]

)
,

and it does not explicitly depend on the dimension d.

(Bernardi et al., 2018)



An environmental illustration

In order to illustrate the practical application of the presented method-
ology, we describe how flood risks are interconnected in a region.

We consider a set of three certified gauge stations recording annual
maximum flood data in the following sites:

Airole - Piena,

Merelli - Centrale Argentina,

Ponte Poggi - Eller.

[...] the flood risk management should require the implementation
of suitable flood hazard maps covering the geographical areas which
could be flooded according to the following scenarios: (a) floods with
a low probability, or extreme event scenarios; (b) floods with a medium
probability (likely return period ≥ 100 years); (c) floods with a high
probability, where appropriate.

(The European Parliament and The Council, 2007, p. 30, chap. III, Article 6.3)



Flood risk map: an example

(Pappadà et al., 2018)



An environmental illustration
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An environmental illustration

The following trivariate copula can be used for modeling the depen-
dence among the three stations:

C(u1, u2, u3) = u1−b1
1 u1−b2

2 u1−b3
3 min(ub1

1 , u
b2
2 , u

b3
3 ),

where b1 = 0.5921, b2 = 0.6862, and b3 = 0.2349.
This copula is non-exchangeable and may model the differences in
pairwise positive dependence among the series.

(Bernardi et al., 2018)



An environmental illustration

VaRα(XA) VaRα(XM) VaRα(XP)

α = 0.90 720.0415 755.9679 187.5132
α = 0.95 1036.028 1048.431 276.9017
α = 0.99 2101.462 1947.033 603.5813

VaRα related to annual maximum flood data (m3/s) in Airole (XA), Merelli (XM), and

Poggi (XP), for different values of α.

R∧α(XA | XM,XP) R∧α(XM | XA,XP) R∧α(XP | XA,XM)

α = 0.90 2.7086 2.4541 2.9346
α = 0.95 3.3245 2.8509 3.8203
α = 0.99 5.3146 4.0124 6.8517

R∧α(Y | X1,X2) = CoVaRα,α(Y | X1 ≥ x1,X2 ≥ x2)/VaRα(Y) related to annual

maximum flood data (m3/s) in Airole (XA), Merelli (XM), and Poggi (XP), for different

values of α.



Questions? Comments?

Thanks for your attention!
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