
The term-structure construction problem
Classical kriging

Kriging with shape constraints

Kriging for arbitrage-free construction of financial
term-structures

Areski Cousin
IRMA, Université de Strasbourg

stresstest2019 : International Workshop on Stress Test and Risk Management
Chaire "Stress Test, RISK Management and Financial Steering"

May 29, 2019

Areski Cousin Kriging for arbitrage-free construction of term-structures Slide 1



The term-structure construction problem
Classical kriging

Kriging with shape constraints

Introduction

Areski Cousin, Hassan Maatouk, Didier Rullière
Kriging of financial term-structure, EJOR, 2016

Areski Cousin, Djibril Gueye
Kriging for arbitrage-free construction of volatility surfaces, working paper

Areski Cousin Kriging for arbitrage-free construction of term-structures Slide 2



The term-structure construction problem
Classical kriging

Kriging with shape constraints

Motivation

Learn a mapping f representing the evolution of a reference quantity Y as
a function of some selected factors or explanatory variables X :

Y = f (X ) for X ∈ D ⊂ Rd

From observations of (input, output) couples : (xi , yi ), i = 1, · · · , n
Examples : interest rates, default rates, implied volatilities, CVA
exposures, mortality rates, surrender rates, computer experiments, any
spacial data
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The term-structure construction problem
Classical kriging

Kriging with shape constraints

Motivation

In risk management applications, this learning/construction problem typically
has the following characteristics :

Incomplete information : the response variable Y is only known or can
only be estimated for a small set of input locations

Indirect observation : the response variable may not be directly observed.
(Typical when constructing ZC rate curves based on market quotes of
some IR products)

Noisy measurement : observed data may not be fully reliable (ex : price of
illiquid instruments, Monte Carlo estimates, any statistical estimates)

Known shape constraints : bounds on the response variable, monotonicity,
convexity, ...
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Kriging with shape constraints

Motivation

What is kriging ?

Kriging is a semi-parametric Bayesian estimation method also known as
Gaussian Process Regression (or GP)

It is a particular kernel machine learning method (see Rasmussen and
Williams (2006)) but compared to frequentist machine learning techniques
(support vector machines, neural network), GP estimates uncertainty

Kriging also extends spline interpolation to uncertainty quantification : the
kriging mean predictor is a spline function (curve in a RKHS with
minimum norm, see Wahba (1990) or Bay el al. (2016))

Implementation infrastructure is mature : R : DiceKriging and
constrKriging, Matlab : GPML , Python : GPyTorch
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Motivation

Kriging and risk management in the literature

GP as surrogate model (estimation based on computer experiments) : Liu
and Staum (2010), Ludkovski (2018), Ludkovski and Risk (2018), De
Spiegeleer et al. (2018), Crépey and Dixon (2019)

Kriging applied to real-world data (model-free) : Asgharian et al. 2013,
Cousin et al. (2016), Ludkowski, Risk, Zail (2018)

Portfolio optimization : da Barrosa et al. (2016)

Time-series modelling : Roberts et al. (2013)

Our contributions :

Show that kriging is a suitable tool for constructing financial
term-structures and quantifying uncertainty

Extend classical kriging to indirect observations, noisy measurements and
shape-constraints
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The term-structure construction problem

1) Compatibility with market data :

We observe the market quotes S = (S1, . . . , Sn) of n liquidly traded
instruments

S depend on the value of f at m input locations X = (x1, . . . , xm)

The vector of output values f (X ) := (f (x1), . . . , f (xm))> satisfies a linear
system of the form

A(S) · f (X ) = b(S),

where

A(S) is a n ×m real-valued matrix

b(S) is a n-dimensional column vector

n < m =⇒ indirect and partial information on the curve values at x1, . . . , xm

2) No-arbitrage assumption : f is e.g. a decreasing or a convex function
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The term-structure construction problem

Example 1 : OIS discount curve

Construction of function T → D(t0,T ) from Si , i = 1, . . . , n, where

Si : par rate at quotation date t0 of an OIS with maturity Ti

t1 < · · · < tpi = Ti : fixed-leg payment dates (annual time grid)

δk : year fraction of period (tk−1, tk)

Si

pi−1∑
k=1

δkD(t0, tk) + (Siδpi + 1)D(t0,Ti ) = 1, i = 1, ..., n

where D(t0,T ) is the OIS discount factor with maturity T

The arbitrage-free curve T → D(t0,T ) is decreasing and D(t0, t0) = 1
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The term-structure construction problem

Example 1 : OIS discount curve

Data : quoted swap rates as of June 3, 2010, for OIS with maturities
1y , . . . , 10y , 15y , 20y , 30y , 40y

Classical kriging (left) vs kriging with monotonicity constraint (right)

Classical kriging Shape-preserving kriging
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The term-structure construction problem

Example 1 : OIS discount curve

Corresponding spot rate and forward rate curves

Monotonic kriging - GP prior with Matérn 5/2 kernel - no noise

Spot rates Forward rates
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The term-structure construction problem

Example 2 : Default rates implied from CDS spreads

Si : CDS spread at time t0 with maturity Ti

t1 < · · · < tpi = Ti : trimestrial premium payment dates, δk : year fraction
of period (tk−1, tk)

D(t0,T ) is the discount factor associated with maturity date T

R : expected recovery rate of the reference entity

Si

pi∑
k=1

δkD(t0, tk)Q(t0, tk) = −(1− R)

∫ Ti

t0

D(t0, u)dQ(t0, u)

where T → Q(t0,T ) is the Ft0 -conditional (risk-neutral) survival distribution
of the reference entity, i.e.,

Q(t0,T ) = Q(τ > T | Ft0)
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The term-structure construction problem

Example 2 : Default rates implied from CDS spreads (cont.)

Using an integration by parts, the survival function u → Q(t0, u) satisfies a
linear relation :

Si

pi∑
k=1

δkD(t0, tk)Q(t0, tk) + (1− R)D(t0,Ti )Q(t0,Ti )

+ (1− R)

∫ Ti

t0

f (t0, u)D(t0, u)Q(t0, u)du = 1− R, i = 1, . . . , n

where f (t0, u) is the instantaneous forward (discount) rate associated with
maturity date u.

As a survival function, T → Q(t0,T ) shall be decreasing and such that
Q(t0, t0) = 1
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The term-structure construction problem
Example 2 : Default rates implied from CDS spreads (cont.)

CDS spreads for protection maturities 1y, 2y, 3y, 4y, 5y, 7y, 10y

Russian sovereign debt, quotes as of 06/01/2005

Monotonic kriging - GP without noise

Gaussian kernel Matérn 5/2
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The term-structure construction problem

Example 3 : Volatility surface

We observe at t0, a series of put option prices f (xi ) = P((Ki ,Ti )) for different
characteristics xi = (Ki ,Ti ), i = 1, . . . , n.
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The term-structure construction problem

Example 3 : Volatility surface

The put price surface (K ,T )→ P(K ,T ) is free of static arbitrage if

K → P(K ,T ) is a convex function such that P(0,T ) = 0 and
∂P
∂K

(0,T ) = 0, for any T ≥ 0

T → P(K ,T ) is a non-decreasing function, for any K ≥ 0

P(K , 0) = (K − S0)+ where S0 is the spot price.
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The term-structure construction problem
Example 3 : Volatility surface

Data : Euro Stoxx 50 Put prices as of January 10, 2019
5% of the data used (red points)
Classical kriging (left) vs kriging with no-arbitrage constraints (right)
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The term-structure construction problem
Example 3 : Volatility surface
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The term-structure construction problem
Example 3 : Volatility surface

5% and 95% estimated quantiles of the fitted GP
Classical kriging (left) vs kriging with no-arbitrage constraints (right)
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Classical kriging

Estimation of the unknown function f using Bayesian statistics

Our first belief in f is given as a Gaussian process prior Y
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Classical kriging

The function f is known at some input points x1, . . . , xn :

f
(
x1) = y1, . . . , f (xn) = yn.
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Classical kriging

This belief is updated given that Y (x1) = y1, . . . ,Y (xn) = yn

Source : presentation of N. Durrande
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Classical kriging

Definition : Gaussian process (GP) or Gaussian random field

A Gaussian process is a collection of random variables, any finite number of
which have (consistent) joint Gaussian distributions.

A Gaussian process
(
Y (x), x ∈ Rd

)
is characterized by its mean function

µ : x ∈ Rd −→ E(Y (x)) ∈ R.

and its covariance function

K : (x , x ′) ∈ Rd × Rd −→ Cov(Y (x),Y (x ′)) ∈ R.

1D kriging kernel K(x , x ′) Class

Gaussian σ2 exp
(
− (x−x′)2

2θ2

)
C∞

Matérn 5/2 σ2
(
1 +

√
5|x−x′|
θ

+ 5(x−x′)2

3θ2

)
exp

(
−
√

5|x−x′|
θ

)
C2

Matérn 3/2 σ2
(
1 +

√
3|x−x′|
θ

)
exp

(
−
√

3|x−x′|
θ

)
C1

Exponential σ2 exp
(
− |x−x′|

θ

)
C0
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Classical kriging

Changing the kernel K has a huge impact on the model

Source : presentation of N. Durrande
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Classical kriging - indirect observations with noise

Assume that f is known up to solving a linear equality system with
measurement errors :

A · f (X ) + ε = b. (1)

where

A is a given n ×m matrix

X = (x1, . . . , xm)> ∈ Rm×d

f (X ) = (f (x1), . . . , f (xm))> ∈ Rm

b ∈ Rn

ε is zero-mean Gaussian noise in Rn with covariance matrix Σnoise

ε is assumed to be independent of the GP Y
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Classical kriging - indirect observations with noise

X = (x1, . . . , xm)> ∈ Rm×d : some design points

b = (b1, . . . , bn)> ∈ Rn : right-hand side of the linear system

Y (X ) = (Y (x1), . . . ,Y (xm)) : vector composed of Y at point X

The conditional process is still a Gaussian Process

Let Y be a GP with mean µ and covariance function K . The conditional
process Y | AY (X ) + ε = b is a GP with mean function

η(x) = µ(x) + (Ak(x))>
(
AKA> + Σnoise

)−1
(b − Aµ), x ∈ Rd

and covariance function K̃ given by

K̃(x , x ′) = K(x , x ′)− (Ak(x))>
(
AKA> + Σnoise

)−1
Ak(x ′), x , x ′ ∈ Rd

where µ = µ(X ) = (µ(x1), . . . , µ(xm))> , K is the covariance matrix of Y (X ),
k(x) = (K (x , x1) , . . . ,K (x , xm))>
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Shape-preserving kriging

New formulation of the problem : estimation of an unknown real-valued
function f : [0, 1]d → R given that{

A · f (X ) + ε = b
f ∈M

whereM is a convex set of functions satisfying some shape property.

For instance,M can be :

Md
0 := {f ∈ C([0, 1]d ,R) | ymin ≤ f (x) ≤ ymax, ∀x ∈ D}

M1
1 := {f ∈ C([0, 1],R) | f is non-decreasing}

M1
2 = {f ∈ C([0, 1],R) | f is convex}

M2
12 = {f ∈ C([0, 1]2,R) | f is non-decreasing in x and convex in y}
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Shape-preserving kriging

Main issues :

The posterior process is not Gaussian anymore.

The shape condition is usually infinite-dimensional.

Proposed solutions :

We construct a finite-dimensional approximation of Y for which the shape
condition is easy to check.

We consider the mode of the posterior distribution (as opposed to the
posterior mean) as a new response surface estimator

Hyper-parameters are estimated using MLE
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Finite-dimensional approximation of GP (1d case)
As in Maatouk and Bay (2014), Cousin et al. (2016), López et al. (2018), we
rely on basis function approximation.

Input domain D is discretized on a regular subdivision u0 < . . . < uN with
a constant mesh δ.
For each ui , we consider hat functions φi (x) := max

(
1− |x−ui |

δ
, 0
)

Y is approximated on D by Y N(x) =
∑N

i=0 Y (ui )φi (x)
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Finite-dimensional approximation of GP (1d case)

Proposition

Let Y be a zero-mean GP with covariance function K and almost surely
continuous paths.

The finite-dimensional process Y N(·) =
∑N

i=0 Y (ui )φi (·) uniformly
converges to Y on D as N →∞, almost surely.

Y N(x) = Φ(x)ξ where ξ := (Y (u0), . . . ,Y (uN))> is a zero-mean
Gaussian vector with covariance matrix ΓN such that ΓN

i,j = K(ui , uj)

Shape-preserving conditions :

Y N takes values on [ymin, ymax] if and only if ymin ≤ ξi ≤ ymax

Y N is non-decreasing on D if and only if ξi+1 ≥ ξi
Y N is convex on D if and only if ξi+2 − ξi+1 ≥ ξi+1 − ξi
· · ·
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Finite-dimensional approximation of GP (2d case)

D = [0, 1]2 is discretized on a (Nx + 1)× (Nt + 1) regular grid with knots
(ui , vj), i = 1, . . . ,Nx , j = 1, . . . ,Nt .

For each knot (ui , vj), we consider tensor product basis functions

φi,j(x , t) := max
(
1− |x − ui |

δx
, 0
)
max

(
1− |t − vj |

δt
, 0
)

Y is approximated on D by

Y N(x , t) =

Nx∑
i=0

Nt∑
j=0

Y (ui , vj)φi,j(x , t)

N = (Nx + 1)(Nt + 1) is the number of knots
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Finite-dimensional approximation of GP (2d case)

Proposition

Let Y be a zero-mean GP with covariance function K and with almost surely
continuous paths.

The finite-dimensional process Y N uniformly converges to Y on D as
Nx →∞ and Nt →∞, almost surely.

Y N(x) = Φ(x)ξ where ξ := (Y (u0, v0),Y (u0, v1), . . . ,Y (uNx , vNt ))> is a
zero-mean Gaussian vector with N × N covariance matrix ΓN such that
ΓN = K((ui1 , vj1), (ui2 , vj2)).

Shape-preserving conditions :

Y N is bounded on [ymin, ymax] if and only if ymin ≤ ξi,j ≤ ymax

Y N(x , t) is non-decreasing function of x if and only if ξi+1,j ≥ ξi,j
Y N(x , t) is a convex function of x if and only if ξi+2,j − ξi+1,j ≥ ξi+1,j − ξi,j
· · ·
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Kriging under shape-preserving conditions

Consider a zero-mean GP prior Y with covariance function K and
N-dimensional approximation Y N .

Kriging the unknown function f boils down to finding the conditional
distribution of Y N given {

A · Y N(X ) + ε = b
Y N ∈M

This is equivalent to finding the distribution of the truncated Gaussian vector
ξ ∼ N (0, ΓN) given that{

A ·Φ(X ) · ξ + ε = b
ξ ∈ Cineq

where Cineq is a set of linear inequality constraints.
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Estimation of hyper-parameters

We consider d-dimensional anisotropic stationary kernels :

K (x , x ′) = σ2
d∏

i=1

Ki (xi − x ′i ; θi )

where Ki is stationary kernel : Gaussian, Matérn 5/2, Matérn 3/2,
Exponential.

Homoscedastic noise : Σnoise = σnoiseIn

Hyper-parameters : p = (σ, θ1, . . . , θd , σnoise)
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Estimation of hyper-parameters

Following López-Lopera et al (2017), we consider two MLE approaches

Unconditional likelihood : Find p that maximizes the Gaussian likelihood
P (A ·Φ(X ) · ξ + ε = b | p) or log-likelihood

LN(p) := −n

2
log(2π)− 1

2
log |C | − 1

2
b>C−1b

where C := AΦ(X )ΓN(p)Φ(X )A> + Σnoise(p)

Conditional likelihood : Find p that maximizes the conditional probability
P (A ·Φ(X ) · ξ + ε = b | ξ ∈ Cineq, p) or the log-likelihood

LN,cond(p) := LN(p)+log P(ξ ∈ Cineq | A·Φ(X )·ξ+ε = b)−log P(ξ ∈ Cineq)
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Estimation of hyper-parameters

Convergence of optimal parameter as a function of N (number of basis
functions)
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Mode estimator

We define the (a posteriori) most probable response surface and measurement
noises as {

MN
K (x) := Φ(x) · (c∗1 , . . . , c∗N)>, x ∈ D

e∗ := (e∗1 , . . . , e
∗
n )>

where (c∗, e∗) is the mode of the truncated Gaussian vector (ξ, ε) given the
constraints, defined as solution of

max
c,e

P (ξ ∈ [c , c + dc], ε ∈ [e, e + de] | A ·Φ(X ) · ξ + ε = b, ξ ∈ Cineq) .

The mode (c∗, e∗) is solution of a quadratic problem

min
A·Φ(X )·c+e=b, c∈Cineq

(
c>(ΓN)−1c + e>Σ−1

noisee
)
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Mode estimator

The mode estimator has several advantages (over alternative estimators) :

It satisfies the constraints on the entire domain D

It is easy to compute as the solution of a quadratic optimisation problem

It corresponds to the maximum a posteriori estimator in the sense of
Bayesian statistics

As N tends to infinity, the limit of MN
K corresponds to a constrained spline

that depends on K (Bay et al., 2016)
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Mode estimator

Data : Euro Stoxx 50 Put prices as of January 10, 2019
Fitted Gaussian kernel using uncond. MLE, all data used
Most probable surface (left) vs most probable noise values (right)
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Mode estimator - prediction accuracy
RMSE as a function of data size

We construct a series of data subsets with increasing number of points

We apply classical kriging and shape-preserving kriging on these subsets

For each data size, we compute average RMSE wrt the original data set.
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Sampling finite-dimensional GP with shape constraints

First remark that the distribution of ξ given A ·Φ(X ) · ξ+ ε = b is multinormal
N (µcond ,Σcond) where{

µcond = ΓNB>
(
BΓNB> + Σnoise

)−1 b
Σcond = ΓN − ΓNB>

(
BΓNB> + Σnoise

)−1
BΓN

with B = A ·Φ(X ).

Following López-Lopera et al (2017), we consider the Hamiltonian Monte Carlo
method introduced by Pakman and Paninski (2013) for sampling truncated
multivariate Gaussians :

T N (µcond ,Σcond , Cineq)

MCMC initialized using the mode estimator since it satisfies the inequality
constraints .
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Sampling finite-dimensional GP with shape constraints

We extrapolate the GP in T direction (adding 2 years)
5% and 95% estimated pointwise quantiles
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Thanks for your attention.
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