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Expectiles

The expectiles have been introduced in the statistical literature by Newey
and Powell (1987) as the minimizers of a piecewise quadratic expected
loss:

eα(X ) = arg min
x∈R

E[α(X − x)2+ + (1− α)(X − x)2−], (D1)

with X ∈ L2 and α ∈ (0, 1). Expectiles can be seen as:

a one-parameter asymmetric generalization of the mean, that
corresponds to the case α = 1/2

a quadratic analogue of the usual quantiles, that are the minimizers
of a piecewise linear expected loss:

[q−α (X ), q+α (X )] = arg min
x∈R

E[α(X − x)+ + (1− α)(X − x)−].
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Expectiles

In contrast with the case of quantiles, problem (D1) has always a unique
solution, identified by the first order condition

αE[(X − eα)+] = (1− α)E[(X − eα)−], (D2)

which is indeed an alternative and better definition than (D1) since it is
well posed for each X ∈ L1, the natural domain of expectiles.
For the most common distributions, the expectiles eα are closer to the
center of the distribution than the corresponding quantiles qα, and the
expectile curve and the quantile curve intersect in a single α.
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Expectiles and quantiles
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Properties of Expectiles

We recall the main properties of expectiles from Nevey and Powell (1987)
and Bellini et al. (2014). Let X ∈ L1 and α ∈ (0, 1). Then:

eα(X + h) = eα(X ) + h, for each h ∈ R
eα(λX ) = λeα(X ), for each λ ≥ 0

X ≤ Y a.s., P(X < Y ) > 0⇒ eα(X ) < eα(Y ), for each α ∈ (0, 1)

eα is strictly increasing with respect to α

eα is continuous with respect to α

limα→0+ eα(X ) = ess inf(X ), limα→1− eα(X ) = ess sup(X )

If α ≤ 1/2, then eα(X + Y ) ≥ eα(X ) + eα(Y ); if α ≥ 1/2 then
eα(X + Y ) ≤ eα(X ) + eα(Y ).

eα(−X ) = −e1−α(X ).
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Axiomatization of expectiles

Expectiles with α ≥ 1/2 have been axiomatized as the only elicitable
coherent risk measures. Recall that a statistical functional T is said to be
elicitable if it can be defined as the minimizer of the expected value of a
suitable consistent scoring function:

T (F ) = arg min
x∈R

∫
S(x , y)dF (y).

A necessary condition for elicitability is the convexity of the level sets with
respect to mixtures (the so called CxLS property):

T (F ) = T (G ) = γ ⇒ T (λF + (1− λ)G ) = γ,

indeed expectiles with α ≥ 1/2 can equivalently be axiomatized as the
only coherent risk measures with the CxLS property (see Bellini et al.,
2014, Delbaen et al., 2016, and the references therein).
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Financial interpretation of expectiles

In order to provide a simple financial interpretation of expectiles, we define
the Expectile VaR as

EVaRα(X ) = −eα(X ), for α ∈ (0, 1/2),

paralleling the standard definition VaRα(X ) = −qα(X ).
With this sign convention, the acceptance set of a risk measure ρ is

Aρ := {X ∈ L1 | ρ(X ) ≤ 0},

and ρ can be recovered from Aρ by the formula

ρ(X ) = inf{m ∈ R | X + m ∈ Aρ}.
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Financial interpretation of expectiles

In the case of EVaRα, the acceptance set is given by

AEVaRα =

{
X ∈ L1

∣∣∣ E[X+]

E[X−]
≥ 1− α

α

}
.

A position is thus acceptable for EVaRα if and only if its gain-loss ratio is
higher than a fixed threshold (1− α)/α ≥ 1.
For comparison, the acceptance set for VaRα is

AVaRα =
{
X
∣∣ P(X < 0) ≤ α

}
,

that can be equivalently written as

AVaRα =

{
X
∣∣∣ P(X ≥ 0)

P(X < 0)
≥ 1− α

α

}
.
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Critiques to expectiles as risk measures

In my opinion, the main drawbacks underlined in the literature are:

expectiles ’depend on the whole distribution’ and not only on the left
tail as the quantiles or the Conditional Value at Risk

expectiles can be strictly subadditive also for comonotonic variables

These drawbacks have to be weighted with the advantages given by the
coherence property and by the existence of consistent scoring functions:

the possibilty of using scoring functions for traditional or comparative
backtesting

the possibility of using scoring functions for expectile forecasting by
means of regression or more modern statistical techniques such as
regression trees, random forests, etc. etc.
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Backtesting with scoring functions

Letting ρ̂k be a sequence of forecasts of a risk measure ρ, Xk the realized
logreturn and S a consistent scoring function for ρ, the realized score is

Ŝn(x) =
1

n

n∑
k=1

S(ρ̂k ,Xk).

The model with the lower realized score is better. We distinguish between

traditional backtesting, (see e.g. Lopez, 1999, Wong, 2010, Holzmann
and Eulert, 2014, Bellini et al., 2019) where the null is related with
the ability of a single model to correctly forecast the risk measure ρ

comparative backtesting (see e.g. Fissler et al., 2016 and Ziegel and
Nolde, 2016) where the null hypothesis is related to the comparative
merit of two models
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Backtesting with scoring functions

Comparative backtesting is based on a Diebold-Mariano test on the
normalized difference of the realized scores of the two competing models.
In order to perform traditional backtesting with the realized score it is
necessary to derive the distribution of the realized score under the null
hypothesis that the forecasting model is correct; the model is then rejected
if the realized score is too big. Since an elicitable functional typically
satisfies also a first order condition of the form

E[I (ρ,X )] = 0

for a suitable identification function I , an alternative strategy is to
backtest by means of the empirical identification function

În(x) =
1

n

n∑
k=1

I (ρ̂k ,Xk)

that should be close to 0 if the model is correctly specified.

F. Bellini (DISMEQ) Financial applications of expectiles Paris, 28/05/2019 12 / 37



An example on simulated data

In Bellini et al. (2019) we compared the empirical power of the two
backtesting strategies for VaR and expectiles forecasting on simulated
data, with Xi = N(µi , 1), with Xi independent, i = 1, ..., 100, for three
fixed vector of means µA, µB , µC , randomly chosen in advance.
The modeler wrongly believes that Xi = N(0, 1), with Xi i.i.d, hence his
VaR forecasts are constant and equal to q0.05(Yi ) = −1.6449 and similarly
its expectile forecasts are constant and equal to e0.05(Y ) = −1.1402.
For the case of VaR, we reject if the number of violations NV satisfies
NV ≤ 1 or NV ≥ 10, that corresponds to a level of the binomial test

P(NV ≤ 1) + P(NV ≥ 10) = 6, 527%.

The threshold S = 0.1216 for the realized score Ŝ is chosen to satisfy

P(Ŝ > S) = 6, 527%.
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An example on simulated data
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An example on simulated data

In order to compare the empirical power of the two test we risimulate
N = 100000 times models A, B and C .
In the case of VaR, the fraction of rejections are:

µ = 0 µ = µA µ = µB µ = µC

R1 6, 56% 6, 44% 17, 71% 80, 56%
R2 6, 66% 6, 98% 41, 76% 97, 60%

In the case of expectiles, we get

µ = 0 µ = µA µ = µB µ = µC

R1 5, 00% 4, 98% 23, 11% 98, 71%
R2 5, 01% 5, 59% 37, 00% 99, 87%
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A real data example

In order to backtest with realized scores a more complex econometric
models we suggest two possible approaches:

to risimulate the empirical distribution of the realized score as e.g. in
Bellini and Di Bernardino (2017)

to first apply a probability integral transform Ui = FYi
(Yi ) and then

to use the asymptotic distribution of the realized score in the uniform
i.i.d. case, similarly to Kerkhof and Melenberg (2004)

As an example we consider two AR(1)-Garch(1,1) models, with normal
and t innovations, estimated on the daily logreturns of the SP500 Index
from 03/01/2007 to 14/12/2012. Estimation has been performed on
rolling windows of 500 logreturns, so we have 1000 distributional forecast.
We backtest both models by means of the number of violations, the
realized scores and the realized identification function.
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A real data example
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A real data example

Ŝ (v) Ŝ (e) Ŝ (v) Ŝ (e)

score 1.50× 10−3 1.38× 10−5 1.49× 10−3 1.28× 10−5

mean 1.31× 10−3 1.00× 10−5 1.52× 10−3 1.58× 10−5

std 4.95× 10−5 1.10× 10−6 8.06× 10−5 1.01× 10−5

p-val 0.00072 0.022 0.52 0.61

Realized values of the quantile and the expectiles scores Ŝ (v) and Ŝ (e) in
the normal (left) and t (right) models, compared with their mean and
standard deviation computed by risimulations.
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Implicit expectiles

Our second financial application of expectiles (Bellini et al., 2018) is to
extract the variability of the risk neutral distribution from option prices.
Since the prices of european calls and puts as a function of the strike K are

C (K ) = e−rTEQ[(ST − K )+] and P(K ) = e−rTEQ[(ST − K )−],

the equation (D2) defining expectiles can be rewritten as

αC (eα(ST )) = (1− α)P(eα(ST )),

where eα(ST ) denotes the α-expectile of the risk neutral distribution, that
we call simply implicit expectile. In other words, it is the value of the
strike price K̄ such that

C (K̄ )

P(K̄ )
=

1− α
α

.
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Implicit expectiles

Since the quoted strikes are discrete, two approaches are possible:

to interpolate option prices or Black-Scholes implied volatilities in
order to derive prices for a continuum of strikes, and then solve
numerically equation (D2) for each α ∈ (0, 1)

to compute the inverse expectile curve α(K ) for quoted strikes

α(Ki ) :=
P(Ki )

P(Ki ) + C (Ki )
, i = 1, . . . , n.

The first approach may be necessary in relatively illiquid markets.
The second approach does not require any model assumption or
interpolation method; the values α(Ki ) are exact and not subject to
discretization or truncation errors.
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Implicit expectiles

Three dimensional visualization of inverse expectile curves. For each day
and each strike, the corresponding α is represented on the z-axis.
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Interexpectile difference

In Bellini et al. (2018) we considered interexpectile differences, defined as

∆α(X ) = eα(X )− e1−α(X ), α ∈ (1/2, 1).

Interexpectile differences are natural variability measures similar to
interquantile differences, with the theoretical advantage of being
consistent with the convex order, in the sense that

X ≤cx Y ⇒ ∆α(X ) ≤ ∆α(Y ).

Our empirical analysis showed that interexpectile differences closely track
the VIX Index, and on our dataset they seem also to have a significant
forecasting power on future logreturns on various time horizons.
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Empirical results
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Graphical comparison between ∆0.75 and the Italian VIX index.
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Forecasting power on future logreturns

∆0.75 Rescaled ∆0.75 Italian VIX e0.25 e0.75
Rt,t+1 -6.833e-06** -7.713e-06** -1.727e-04 2.147e-09 -3.824e-08

(-2.974) (-3.137) (9.483e-05) (0.012) (-0.214)

Rt,t+7 -4.031e-05*** -3.683e-05*** -0.0009704* 4.128e-08 -2.601e-07
(-4.223) (-3.540) (-2.141) (0.046) (-0.286)

Rt,t+30 -1.203e-04* -1.401e-04* -0.003711 1.204e-06 3.205e-07
(-2.288) (-2.476) (-1.479) (0.234) (0.062)

Rt,t+60 -2.773e-04* -0.0002307 -0.009253 7.595e-06 4.651e-06
(-3.169) (-2.099) (-1.826) (0.539) (0.321)

Rt,t+90 -0.0005915* -0.0004034 -0.009919 3.005e-06 1.314e-06
(-3.545) (-1.476) (-1.153) (0.166) (0.072)

Comparison of forecasting power of different volatility indexes by means of
the significativity of a linear regression as in Elyasiani et al. (2016).
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Risk contributions

The third and last financial application (Bellini et al., 2019) is the
computation of Risk Parity portfolios using the expectiles as risk measures.
For a fixed long only portfolio x ∈ Rn

++, the total expectile is denoted by

ζα(x) := eα

(
n∑

k=1

xkLk

)
.

Expectile Risk Parity portfolios are defined by the requirement that the
position in each asset equally contributes to the expectile of the portfolio.
The standard approach for decomposing a positively homogeneous risk
measure is Euler allocation (see e.g. Denault, 2001, Kalkbrener, 2005).
Indeed if ζα(x) is differentiable, then by Euler’s theorem

ζα(x) =
n∑

k=1

xk
∂ζα(x)

∂xk
.
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Risk contributions

It follows that the quantity xk
∂ζα(x)
∂xk

can be interpreted as the total risk
contribution of the position in asset k . In Emmer et al. (2015) it was
proved that if the partial derivative of ζα(x) with respect to xk exists, then

∂ζα(x)

∂xk
=
αE[Lk1{L>eα(L)}] + (1− α)E[Lk1{L≤eα(L)}]

αP(L > eα(L)) + (1− α)P(L ≤ eα(L))
,

where

L(x) =
n∑

k=1

xkLk .

For discrete distributions such those originating from historical scenarios
the differentiability of ζα(x) cannot be always guaranteed. However,
Euler’s theorem holds also for subdifferentiable functions under more
general conditions (see e.g. Yang and Wei, 2008).
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Risk contributions

Indeed, if we define

TRC eα
k (x) := xk

αE[Lk1{L>eα(L)}] + (1− α)E[Lk1{L≤eα(L)}]

αP(L > eα(L)) + (1− α)P(L ≤ eα(L))
,

it always holds that
n∑

k=1

TRC eα
k (x) = eα(L).

It is possible to prove that nondifferentiability arises if and only if

P(L = eα(L)) > 0,

i.e. iff there is a positive mass in the expectile. The impact of the lack of
differentiability is that Euler allocations are no more uniquely defined;
there is a subjective choice in the very definition of risk contributions, and
as a result a Risk Parity portfolio for the chosen definition may not exist.
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The additive case

Risk contributions do not admit in general an explicit espression.
A special case arises if the random vector (L1, . . . , Ln) is such that the risk
measure ρ is additive, in the sense that

ρ(L) =
n∑

k=1

xkρ(Lk),

since here clearly
TRC ρk (x) = xkρ(Lk),

so the total risk contribution of the position in each asset coincides with
its own risk measure. When the risk measure ρ is VaR or CVaR, it is well
known that additivity holds if the random vector (L1, . . . , Ln) is
comonotonic. For expectiles, it is possible to prove that additivity holds if
and only if

P ((X − eα(X )) (Y − eα(Y )) ≥ 0) = 1.
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Risk Parity portfolios

Expectile Risk Parity portfolios are thus defined by

TRC eα
i (x) = TRC eα

k (x), for i , k = 1, . . . , n, i 6= k .

In order to find Risk Parity portfolios, we considered three approaches:

“system-of-equations” formulations

“log” formulations

“least squares” formulations.

Before entering a detailed numerical comparison, we provide first a simple
illustration based on the daily returns of 5 stocks taken from DJIA, from
16/02/1990 to 07/04/2016.
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Expectile Risk Parity portfolios
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Risk Parity portfolios: system-of-equations formulations

The most direct approach is to try to solve the nonlinear system
α

T∑
t=1

(
n∑

i=1

xiLi ,t − ζα

)
+

= (1− α)
T∑
t=1

(
ζα −

n∑
i=1

xiLi ,t

)
−

TRCExp
i (y) = δ, i = 1, . . . , n

(fsolve-many)
or equivalently

α

T∑
t=1

(
n∑

i=1

xiLi ,t − ζα

)
+

= (1− α)
T∑
t=1

(
ζα −

n∑
i=1

xiLi ,t

)
−

TRCExp
i (x) =

ζα
n
, i = 1, . . . , n

(fsolve-few)
respectively in n + 2 and n + 1 variables.
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Risk Parity portfolios: log formulations

A second approach (see e.g. Maillard, 2010, Spinu, 2013, Mausser and
Romanko, 2018) is to solve the problem

min
x∈Rn

++

ζα(x)

s.t. ∑n
k=1 ln xk ≥ c

, (LogConstr)

where c ∈ R is an arbitrary constant. A variant is to put the log in the
objective function (see Bai et al., 2016, Cesarone et al., 2018) and solve{

min
x∈Rn

++

ζα(x)− λ
n∑

k=1

ln xk , (LogObjFun)

for some λ > 0. Both problems admit a unique solution if the expectile of
the global minimum expectile portfolio is strictly positive.
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Risk Parity portfolios: least squares formulations

Finally, a third approach (following e.g. Maillard, 2010) is to consider
directly the problem{

min
x∈Rn

++,
∑

xk=1

n∑
i ,k=1

(
TRC eα

i (x)− TRC eα
k (x)

)2
(LS)

An alternative least squares formulation (following e.g. Cesarone and
Colucci, 2018) is to minimize the sum of squared deviations of relative risk
contributions from 1/n:{

min
x∈Rn

++,
∑

xk=1

n∑
k=1

(
TRC eα

k (x)

ζα(x)
− 1

n

)2

(LSRel)

Both problems are nonconvex and require the hypothesis that the expectile
of the global minimum expectile portfolio is strictly positive.
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Empirical analysis

In a numerical experiment on portfolios from the NASDAQ 100, we
considered several values of α (= 0.52, 0.6, 0.7, 0.8, 0.9, 0.95), n
(=5, 10, 20, 82), and T (= 50, 100, 200, 596). In the next slide we report

F(x) =
n∑

i ,k=1

(
TRCExp

i (x)− TRCExp
k (x)

)

MeanAbsDev =
1

n

n∑
k=1

∣∣∣∣∣TRCExp
k (x)

ζα(x)
− 1

n

∣∣∣∣∣
MaxAbsDev = max

1≤k≤n

∣∣∣∣∣TRCExp
k (x)

ζα(x)
− 1

n

∣∣∣∣∣
and the running times on a workstation with Intel(R) Core(TM) i7-3520M
CPU (2.9 GHz, 8 GB RAM) under Windows 10 Pro, using Matlab R2016b.
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Empirical analysis

α = 0.7; n = 5; T = 100; MinExp= 0.45 · 10−2 α = 0.9; n = 5; T = 100; MinExp= 2.00 · 10−2

F(x) MeanAbsDev MaxAbsDev time (secs.) F(x) MeanAbsDev MaxAbsDev time (secs.)

fsolve few 3.06 10−37 2.22 10−17 2.78 10−17 0.0 1.90 10−6 1.00 10−2 2.50 10−2 0.0

fsolve many 3.06 10−37 2.22 10−17 2.78 10−17 0.0 1.90 10−6 1.00 10−2 2.50 10−2 0.0

LogConstr 4.32 10−14 6.23 10−6 1.46 10−5 64.6 3.42 10−7 4.66 10−3 8.93 10−3 1.9

LogObjFun 2.57 10−20 5.34 10−9 1.29 10−8 2.3 1.90 10−6 1.00 10−2 2.50 10−2 1.4

LS 1.11 10−19 1.14 10−8 2.45 10−8 1.6 1.90 10−6 1.00 10−2 2.50 10−2 1.3

LSRel 5.82 10−18 8.48 10−8 1.56 10−7 2.0 3.34 10−7 4.73 10−3 8.38 10−3 1.8

α = 0.7; n = 10; T = 100; MinExp= 0.26 · 10−2 α = 0.9; n = 10; T = 100; MinExp= 1.67 · 10−2

fsolve few 2.19 10−7 7.23 10−3 3.61 10−2 6.2 1.20 10−5 1.41 10−2 3.96 10−2 0.0

fsolve many 2.72 10−8 3.56 10−3 9.17 10−3 0.1 1.16 10−5 1.39 10−2 3.87 10−2 0.1

LogConstr 9.51 10−8 5.96 10−3 1.62 10−2 6.1 7.48 10−7 4.02 10−3 8.33 10−3 3.6

LogObjFun 2.08 10−8 2.40 10−3 1.09 10−2 3.8 3.79 10−7 2.69 10−3 7.30 10−3 2.1

LS 2.08 10−8 2.40 10−3 1.09 10−2 2.4 3.79 10−7 2.69 10−3 7.30 10−3 1.7

LSRel 2.13 10−6 2.02 10−2 1.01 10−1 15.0 4.57 10−7 2.82 10−3 7.31 10−3 2.3

Experimental results for solving the ExpRP models for α = 0.7, 0.9, n = 5, 10,
and T = 100.
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Empirical analysis

α = 0.7; n = 20; T = 596; MinExp= 0.33 · 10−2 α = 0.9; n = 20; T = 596; MinExp= 1.57 · 10−2

F(x) MeanAbsDev MaxAbsDev time (secs.) F(x) MeanAbsDev MaxAbsDev time (secs.)

fsolve few 1.08 10−7 2.77 10−3 1.41 10−2 0.2 2.00 10−3 2.93 10−3 9.29 10−3 0.1

fsolve many 1.08 10−7 2.77 10−3 1.41 10−2 0.2 2.01 10−3 2.93 10−3 9.34 10−3 0.1

LogConstr 2.75 10−7 4.06 10−3 2.30 10−2 13.8 5.68 10−8 4.71 10−4 1.54 10−3 1644.5

LogObjFun 1.06 10−5 2.55 10−2 9.94 10−2 2611.1 7.38 10−6 5.86 10−3 1.57 10−2 2470.4

LS 1.88 10−8 7.83 10−4 6.75 10−3 581.4 3.74 10−7 9.91 10−4 6.22 10−3 308.4

LSRel 1.08 10−8 1.01 10−3 3.15 10−3 22.4 1.88 10−8 2.72 10−4 1.11 10−3 52.7

α = 0.7; n = 82; T = 596; MinExp= 0.20 · 10−2 α = 0.9; n = 82; T = 596; MinExp= 1.38 · 10−2

fsolve few 1.71 10−6 2.54 10−3 1.29 10−2 20.0 3.58 10−8 6.84 10−5 4.85 10−4 21.1

fsolve many 1.71 10−6 2.54 10−3 1.29 10−2 2.6 3.99 10−8 7.17 10−5 5.32 10−4 1.4

LogConstr 4.03 10−7 1.01 10−3 1.32 10−2 124.5 1.12 10−8 4.26 10−5 3.50 10−4 98.9

LogObjFun 1.34 10−4 1.07 10−2 1.62 10−1 2724.2 2.55 10−3 1.06 10−2 1.86 10−1 3264.3

LS 2.25 10−8 2.09 10−4 3.69 10−3 999.1 1.17 10−8 4.30 10−5 3.45 10−4 656.7

LSRel 1.68 10−6 2.53 10−3 1.25 10−2 374.8 1.08 10−8 4.30 10−5 3.21 10−4 134.1

Experimental results for solving the ExpRP models for α = 0.7, 0.9, n = 20, 82,
and T = 596.
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